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Direct numerical simulations are performed of a confined three-dimensional, tem-
porally developing, initially isothermal gas mixing layer with one stream laden with
as many as 7.3×105 evaporating hydrocarbon droplets, at moderate gas temperature
and subsonic Mach number. Complete two-way phase couplings of mass, momentum
and energy are incorporated which are based on a thermodynamically self-consistent
specification of the vapour enthalpy, internal energy and latent heat of vaporization.
Effects of the initial liquid mass loading ratio (ML), initial Stokes number (St0),
initial droplet temperature and flow three-dimensionality on the mixing layer growth
and development are discussed. The dominant parameter governing flow modulation
is found to be the liquid mass loading ratio. Variations in the initial Stokes number
over the range 0.5 6 St0 6 2.0 do not cause significant modulations of either first- or
second-order gas phase statistics. The mixing layer growth rate and kinetic energy are
increasingly attenuated for increasing liquid loadings in the range 0 6 ML 6 0.35.
The laden stream becomes saturated before evaporation is completed for all but the
smallest liquid loadings owing to: (i) latent heat effects which reduce the gas temper-
ature, and (ii) build up of the evaporated vapour mass fraction. However, droplets
continue to be entrained into the layer where they evaporate owing to contact with the
relatively higher-temperature vapour-free gas stream. The droplets within the layer
are observed to be centrifuged out of high-vorticity regions and to migrate towards
high-strain regions of the flow. This results in the formation of concentration streaks
in spanwise braid regions which are wrapped around the periphery of secondary
streamwise vortices. Persistent regions of positive and negative slip velocity and slip
temperature are identified. The velocity component variances in both the streamwise
and spanwise directions are found to be larger for the droplets than for the gas
phase on the unladen stream side of the layer; however, the cross-stream velocity and
temperature variances are larger for the gas. Finally, both the mean streamwise gas
velocity and droplet number density profiles are observed to coincide for all ML when
the cross-stream coordinate is normalized by the instantaneous vorticity thickness;
however, first-order thermodynamic profiles do not coincide.

1. Introduction
The ability to model and predict two-phase gas–liquid turbulent flows with evap-

oration is currently impeded by a relatively limited understanding of the underlying
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physics governing their evolution. In order to simplify the following analysis, we
restrict the discussion to cases for which the dispersed phase: (i) has a relatively
small and negligible volume fraction, (ii) is composed of discrete, non-connected and
approximately spherical droplets, (iii) has negligible effects due to droplet collisions,
breakup and coalescence, and (iv) has no chemical reactions. Note that these restric-
tions do not limit the flow to small liquid mass loadings (ratios of liquid to gas
phase densities are generally ∼ 103), and are often applicable to the early stages of
two-phase combustion for which the liquid must be evaporated prior to reacting (e.g.
Williams 1965). Therefore, the present study is of interest to a variety of gas–liquid
flows with both fundamental and applied relevance; e.g. spray mixing, spray com-
bustion, atomization, painting and weather prediction (see e.g. Elghobashi 1994). Of
particular interest to the investigation are the characterization of the droplet size and
concentration distributions, as well as an elucidation of flow modulation due to phase
couplings of mass, momentum and energy in a planar mixing-layer configuration.

Evaporating dispersed droplet flows are expected to display many of the physical
effects prevalent in solid particle flows which have received a much greater scrutiny
owing to their relatively simpler physics and mathematical descriptions. For example,
it is well understood that solid particles tend to be centrifuged away from high vorticity
regions and migrate into high strain ‘convergence’ regions of homogeneous turbulence
(Squires & Eaton 1991). This phenomena is referred to as ‘preferential concentration’
and has additionally been observed for a wide variety of flow configurations (see Eaton
& Fessler 1994 for a review). The extent to which preferential concentration occurs
depends on the ratio of the particle time constant to the relevant flow timescales
(i.e. the Stokes number, St). Very small particles (St � 1) closely follow local flow
motions and behave essentially as fluid elements, very large particles (St � 1) are
predominantly unaffected by the flow owing to inertial dominance; however, particles
with intermediate Stokes numbers (St ∼ 1) experience the combined influences of
both the turbulence structures and finite velocity slip resulting in complex dispersion
patterns (Wen et al. 1992; Martin & Meiburg 1994; Elghobashi 1994).

It is also understood that solid particle flows can be described as either ‘one-
way’ coupled, when the dispersed phase mass loading is small and the flow remains
essentially unaltered by the particles, or as ‘two-way’ coupled when the loading is
increased to the point at which the particles modulate the flow primarily through
integrated particle drag effects (e.g. Elghobashi & Truesdell 1993). Gore & Crowe
(1989) compiled results from a variety of experiments which suggest that solid
particles can act either to dissipate or to enhance turbulence energy depending on
the diameter of the particles relative to the integral lengthscale of the flow; however,
no conclusions could be drawn as to the magnitude of the modulation. Kulick,
Fessler & Eaton (1994) conducted experiments of a fully developed channel flow
with solid particle mass loadings as large as 80%. It was observed that the fluid
turbulence intensity was attenuated by the particles; however, the mean fluid velocity
profile remained essentially unaltered for all cases. Their results also confirmed several
previous investigations which find a larger streamwise velocity component variance
for particles relative to the corresponding fluid intensity in inhomogeneous flows
(e.g. Soo, Ihrig & El Kouh 1960; Carlson & Peskin 1975; Tsuji & Morikawa 1982;
Steimke & Dukler 1983; Rogers & Eaton 1990). This phenomenon has been predicted
theoretically in the presence of a constant mean velocity gradient by Liljegren (1993).

In comparison with solid particle flows, evaporating dispersed droplet flows can
be expected to incorporate all of the above physical effects, while simultaneously
introducing additional complexities. In addition to the drag force which predominantly
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governs phase coupling in solid particle flows, turbulence modulation in evaporating
droplet flows is also governed by both mass and thermal energy exchange between
the gas and liquid phases (heat transfer is generally neglected for solid particles;
however, latent heat effects should amplify the relevance of thermal energy transfer
in the presence of evaporation). In addition, the rate at which evaporation occurs is
determined by the local flow conditions, thereby making the droplet time constant
a function of both time and space, even for initially monodisperse distributions
(Harstad & Bellan 1997; Mashayek et al. 1997). This may significantly alter the
overall preferential concentration and turbulence modulation for evaporating droplets
relative to the analogous effects observed for solid particles.

The present study focuses on direct numerical simulations (DNS) defined as those in
which all lengthscales and timescales of the gas phase flow are resolved without resort-
ing to either time averaged or subgrid turbulence models. The ‘Eulerian–Lagrangian’
approach is adopted in which every individual droplet is tracked in a time accurate
manner using a Lagrangian reference frame (in contrast to the ‘Eulerian–Eulerian’
approach which describes the dispersed phase as an interpenetrating continuum de-
rived by averaging over sufficiently large local ensembles of droplets, e.g. Zhou 1993;
Elghobashi 1994). Present-day supercomputers have been instrumental in the suc-
cess of DNS for simulating single-phase turbulent flows at all scales for sufficiently
low Reynolds numbers; however, for two-phase gas-droplet flows they are still not
powerful enough to simultaneously resolve the spatial scales interior and adjacent
to individual droplets when the spatial flow scales are much larger than the droplet
diameter. In this case, the Lagrangian description therefore involves the solution
of modelled transport equations for the individual droplet position vectors, velocity
vectors, temperatures and masses. Generally, the drag force, heat transfer rate and
evaporation rate are related to the local slip velocity, slip temperature and slip vapour
mass fraction evaluated at the droplet position (Miller, Harstad & Bellan 1998). Such
models typically assume infinite thermal conductivity of the liquid, and are based on
analytical Stokes/quiescent flow solutions combined with empirical correlations to
account for finite droplet Reynolds-number effects.

Obtaining DNS solutions of the Eulerian–Lagrangian two-phase flow equations
can be extremely computationally intensive owing to the large numbers of droplets/
particles involved (DNS of solid-particle-laden homogeneous turbulence at present
tracks as many as 106 individual particles, e.g. Squires & Eaton 1990, 1991). In the
presence of evaporation, numerical solutions are even more computationally intensive
relative to solid particles owing to both (i) additional conservation equations for the
droplet temperature and mass evolutions, and (ii) the need to solve the compressible
form of the gas phase equations which is necessary owing to gas density sources (the
evaporating drops). Miller et al. (1998) recently evaluated eight Lagrangian droplet
models applicable to DNS from the perspective of both accuracy and computational
efficiency. They included both equilibrium and non-equilibrium evaporation models
and evaluated them through comparisons with a variety of single isolated droplet
vaporization experiments. All models were found to perform nearly identically for
low evaporation rates; however, for high evaporation rates in which the carrier gas
temperature is larger than the liquid boiling temperature, substantial deviations among
the various model predictions were observed. A comparison of various methods for
evaluating properties showed that an assumption of constant properties provides
both accurate and computationally efficient model predictions when the properties
are evaluated at either the liquid wet bulb or boiling temperatures. They further
found that non-equilibrium effects can become important for relevant initial droplet
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diameters (< 50 µm) when the evaporation rate is sufficiently large, and therefore
suggest a model based on the Langmuir–Knudsen evaporation law combined with
an analytical heat transfer correction for evaporation effects.

At the present time, the extent of previous DNS investigations into the physics
of evaporating droplet-laden turbulent flows is quite limited. Mashayek et al. (1997)
performed DNS of isotropic, incompressible turbulence seeded with liquid droplets
obeying the ‘D2 law’ (Godsave 1953; Spalding 1953). They studied the effects of the
initial droplet time constant, the vaporization rate and the droplet Schmidt number
on the evolution of the probability density function (PDF) of the ensuing droplet
size distribution. They found that initially monodisperse droplet size distributions
develop PDFs which tend towards Gaussian for intermediate times. The assumptions
of that investigation were somewhat restrictive because only one-way coupling with an
incompressible, isotropic and isothermal flow was considered. Mashayek (1998a) and
Mashayek (1998b) later relaxed these restrictions and performed low-Mach-number
DNS of both forced isotropic and homogeneous shear turbulence with complete two-
way coupling. Mashayek derived the phase coupling terms for the gas energy equation
under the assumption that the heat capacities of the liquid and the evaporated vapour
are constant and equal. These simulations tracked as many as 5.5 × 105 individual
droplets obeying a relatively simple ‘mass analogy’ evaporation model which is strictly
valid only for low vaporization rates (Miller et al. 1998). Results from these studies
illustrate the effects of the mass loading ratio, the initial droplet time constant, and
several thermodynamic droplet parameters on the turbulence evolution, and suggest
that evaporation can be prematurely halted owing to elevated vapour mass fractions
in the gas phase. Mashayek (1998b) also confirmed that the streamwise velocity
variance of the droplets is larger than that of the fluid for evaporating droplets in
the presence of a uniform mean velocity gradient. The above mentioned evaporation
studies confirm that effects of preferential concentration and turbulence modulation
prevail for evaporating dispersed droplet flows, but with increased complexity with
respect to solid particle flows owing in large part to the evaporative formation of
polydisperse size distributions.

The planar mixing-layer configuration provides a relatively simple, non-
homogeneous flow geometry which removes some of the restrictions imposed by
homogeneous turbulence studies. In particular, the growth, development and pair-
ing of large-scale spanwise vorticity structures (Winant & Browand 1973; Brown &
Roshko 1974) are known to play a strong role in both the development of the layer
and the transition to turbulence (Huang & Ho 1990; Moser & Rogers 1991), and
also in the dispersion of solid particles (e.g. see Eaton & Fessler 1994 for a related
review). Chein & Crowe (1987) studied the effects of vortex pairing on solid-particle
dispersion in a planar shear layer simulated using a discrete-vortex method. They
found that particles with intermediate Stokes numbers in the size range 0.5 < St < 5
may be laterally dispersed farther than fluid particles; an effect which is increased
by vortex pairing. Lazaro & Lasheras (1989, 1992a, b) conducted a series of low-
gas-temperature planar mixing-layer experiments in which one stream is seeded with
water droplets. Their results confirm the observation of increased particle dispersion
in the presence of acoustic flow forcing, whereas all particles are found to disperse at
a smaller rate than the fluid momentum in the absence of forcing. Martin & Meiburg
(1994) performed two-dimensional, inviscid mixing-layer simulations with one stream
laden with as many as 106 solid particles in the Stokes number range 10−2 < St < 102.
They traced the particles backwards in time and found that the most highly dispersed
particles originated from inclined narrow bands within the braid regions. Their results
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also support previous findings by several of the above investigators, as well as by
Wen et al. (1992), Longmire & Eaton (1992) (for a jet), Kiger & Lasheras (1995,
1997), confirming the existence of particle concentration ‘streaks’ forming in braid
regions between spanwise vortices (see also Crowe, Troutt & Chung 1995). In a
related issue, Kiger & Lasheras (1995) found that the vortex pairing process has a
homogenizing effect on the particle distribution. Kiger & Lasheras (1997) used the
same experimental facility to study turbulence due to particles and observed regions
of persistent positive and negative slip velocity corresponding to accelerating and
decelerating fluid regions, respectively. The above measurements have all been made
for either solid particles or for water droplets in low-temperature flows with negligible
evaporation rates. Furthermore, all of the results are for small liquid mass loadings
∼ 1% (i.e. one-way coupling), and are based on either two-dimensional simulations
or predominantly two-dimensional experimental mixing layers. However, the effects
of evaporation, two-way coupling and three-dimensional large-scale flow structures
are potentially important in general dispersed-droplet mixing layers.

The primary objectives of the present investigation are (i) to provide a detailed
derivation of all phase coupling terms for gas–droplet turbulent flows in the realistic
case where the liquid and evaporate heat capacities and the molecular weights of the
carrier gas and the evaporated vapour are not equal, and (ii) to obtain DNS solutions
of the governing equations for the case of a three-dimensional planar gas mixing layer
where one stream is laden with initially monodisperse hydrocarbon droplets (for a
variety of initial liquid mass loadings, initial Stokes numbers, initial droplet temper-
atures and streamwise forcing amplitudes). In particular, the effects of both primary
and secondary large-scale vortical structures are of interest (the flows considered are
transitional and do not include substantial small-scale development associated with
high-Reynolds-number mixing transition). The simulated results are then used in order
to study (i) mixing-layer development and evaporative flow saturation, (ii) droplet or-
ganization and preferential concentration, and (iii) flow structure and modulation. The
paper is organized as follows. The governing equations describing the gas phase trans-
port, droplet transport, and phase coupling terms are presented in § 2. This section also
includes a new and thermodynamically self-consistent derivation of the evaporated
vapour enthalpy, the latent heat of evaporation, and the gas phase internal energy. The
mixing-layer configuration and numerical approach are described in § 3. Results rel-
evant to evaporative flow saturation, preferential concentration and flow modulation
are presented in § 4. Conclusions and further discussions are provided in § 5.

2. Mathematical formulation
Consider the case of two-phase gas–liquid flows with evaporation of dispersed

droplets into a pure inert carrier gas having different molecular weight and heat
capacity than the evaporate. It is assumed that all species are calorically perfect, the
dispersed phase volume fraction is much smaller than the gas phase volume fraction,
and gravity is neglected. It is further assumed that constant values of the gas phase vis-
cosity, thermal conductivity and species diffusivity can be prescribed independently of
the local mixture fraction. The dispersed phase is assumed to be composed of spher-
ical droplets with diameter significantly smaller than the Kolmogorov lengthscale;
droplet momentum transport is considered to be only a function of the drag force
(i.e. gravity, Basset history, added mass and other terms are neglected); the droplet
temperature is assumed to be internally uniform with infinite liquid conductivity;
and thermal exchange with the gas phase is only through convective/conduction heat



298 R. S. Miller and J. Bellan

transfer (negligible radiation effects). Furthermore, nucleation, coalescence, breakup
and collisions of droplets are all neglected. Throughout the formulation, the sub-
scripts C, V and L will be used to distinguish quantities specific to the carrier gas, the
evaporated vapour and the liquid, respectively; whereas the subscript G refers to the
carrier plus vapour gas phase mixture.

2.1. Gas phase conservation equations

The compressible form of the governing equations for the gas phase (carrier plus
vapour mixture) are derived to include mass, momentum and energy exchange between
the gas and the dispersed evaporating liquid phase:

∂

∂t
(ρG) +

∂

∂xj
[ρGuj] = ŜI , (1)

∂

∂t
(ρGui) +

∂

∂xj
[ρGuiuj + PGδij − τij] = ŜII,i, (2)

∂

∂t
(ρGEG) +

∂

∂xj

[
(ρGEG + PG)uj − λG ∂TG

∂xj
− uiτij

]
= ŜIII , (3)

∂

∂t
(ρGYV ) +

∂

∂xj

[
ρGYVuj − ρGΓG ∂YV

∂xj

]
= ŜI , (4)

∂

∂t
(ρGφ) +

∂

∂xj

[
ρGφuj − ρGΓG ∂φ

∂xj

]
= 0, (5)

PG = ρGR

[
YV

WV

+
(1− YV )

WC

]
TG, (6)

where ρG is the gas phase density, ui is the gas phase velocity, EG = eG + 1
2
uiui is the

total gas energy (internal eG, plus kinetic), PG is the thermodynamic pressure, YV is
the mass fraction of the evaporated liquid vapour species, W denotes the molecular
weight, φ is a passive scalar ‘tracer’ (used in this study to mark the single-phase
stream of the mixing layer) and τij is the viscous stress tensor (with viscosity µG).

Furthermore, δij is the Kronecker delta function, R is the universal gas constant, and
λG and ΓG are the constant gas phase thermal conductivity and Fickian diffusion
coefficient, respectively. The right-hand side terms SI , SII,i and SIII describe the
phase couplings of mass, momentum and energy, respectively, and the hat notation

Ŝ indicates a (minimal) conservative smoothing operation required for numerical
stability (discussed below). Note that a variable density (compressible) formulation is
necessary even for low-velocity flows owing to the presence of both the mass source
term and to non-equal molecular weight effects.

2.2. Individual droplet conservation equations

The calculation of the phase coupling source terms in (1)–(5) requires the specification
of a model governing the behaviour of a single droplet. It is impossible with present
supercomputer capabilities to resolve all of the relevant droplet scales (internal and
external boundary layers) for every single droplet; therefore, the term DNS as applied
to the present flow only implies a complete resolution of the gas phase on scales
equal to and larger than the Kolmogorov lengthscales (ηk) and timescales (τk). Thus,
the dispersed droplet phase can only be fully resolved on temporal scales, whereas
the spatial droplet scales (which are assumed to be � ηk) must be modelled in
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an appropriate manner. Under the assumptions described above, a non-equilibrium
Langmuir–Knudsen evaporation model (Bellan & Harstad 1987) is chosen based on
a recommendation by Miller et al. (1998) after comparing eight different vaporization
models applicable to DNS with a variety of experimental results. Here, the Lagrangian
modelled equations describing the transient position (Xi), velocity (vi), temperature
(Td) and mass (md) of a single droplet are:

dXi

dt
= vi, (7)

dvi
dt

=
Fi

md
=
f1

τd
(ui − vi), (8)

dTd
dt

=
Q+ ṁdLV

mdCL
=

Nu

3PrG

(
Cp,G

CL

)(
f2

τd

)
(TG − Td) +

(
ṁd

md

)
LV

CL
, (9)

dmd
dt

= ṁd = − Sh

3ScG

(
md

τd

)
ln [1 + BM] , (10)

where the subscript d denotes individual droplet conditions, the particle time constant
for Stokes flow is τd = ρLD

2/(18µG), D is the droplet diameter, CL is the heat capacity
of the liquid and the latent heat of evaporation is LV . Additionally, the gas mixture
heat capacity is calculated using a mass averaging; Cp,G = (1 − YV )Cp,C + YVCp,V
(evaluated at the droplet location) where Cp,C and Cp,V are the constant pressure heat
capacities of the carrier gas and vapour, respectively (note that Cv,C and Cv,V are the
corresponding constant volume heat capacities). The gas phase Prandtl and Schmidt
numbers are PrG = µGCp,G/λG and ScG = µG/(ρGΓV ), respectively. The drag force
is determined by the local ‘slip velocity’ vector usl,i = ui − vi (subscript sl denotes
slip variables), whereas the convective thermal energy transfer (Q in (9)) is driven
by the local ‘slip temperature’ (Tsl = TG − Td), and the evaporation rate (equation
(10)) is driven by the local ‘slip vapour mass fraction’ (YV,sl = YV,s − YV ) in terms
of the mass transfer number; BM = (YV,s − YV )/(1− YV,s) (calculated using the non-
equilibrium surface vapour fraction; subscript s denotes droplet surface conditions).
Note that the gas phase variables ui, TG and YV correspond to the far-field conditions
for the droplets and must be interpolated from the Eulerian numerical grid to the
droplet location during the simulations. The steady gravitational settling velocity
(vg,i ≈ τdgi, where gi is the gravitational acceleration vector) is much smaller than the
characteristic flow velocity for all cases considered in this study; therefore, gravity
effects are neglected in the droplet formulation.

In (8), Stokes drag is empirically corrected for finite droplet Reynolds numbers
(Resl = ρGUslD/µG is based on the slip velocity and Reb = ρGUbD/µG is based on the
blowing velocity) by the correlation:

f1 =
1 + 0.0545Resl + 0.1Re

1/2
sl (1− 0.03Resl)

1 + a |Reb|b
, (11)

a = 0.09 + 0.077 exp(−0.4Resl) b = 0.4 + 0.77 exp(−0.04Resl),

where Usl = |ui − vi| is the slip velocity magnitude, and the blowing velocity (Ub) is
obtained from the mass conservation relation at the droplet surface: ṁd = −πρGD2Ub.
The correlation (11) is fit to the axisymmetric simulation results of Cliffe & Lever
(1985) and is valid for the ranges 0 6 Resl 6 100 and 0 6 Reb 6 10. The Nusselt (Nu)
and Sherwood (Sh) numbers are empirically modified for convective corrections to
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heat and mass transfer based on the Ranz–Marshall correlations (Ranz & Marshall
1952a, b):

Nu = 2 + 0.552 Re
1/2
sl Pr

1/3
G Sh = 2 + 0.552 Re

1/2
sl Sc

1/3
G , (12)

respectively. Finally, the function f2 = β/(eβ − 1) is an analytical evaporative heat
transfer correction to the solid sphere Nusselt number which results from the quasi-
steady gas-phase assumption, where the non-dimensional evaporation parameter (β):

β = −
(

3PrGτd
2

)
ṁd

md
= −

(
ρLPrG
8µG

)
dD2

dt
, (13)

is constant for droplets obeying the ‘D2 law’ (Godsave 1953; Spalding 1953).
Non-equilibrium (subscript neq) effects are included in the droplet model using the

Langmuir–Knudsen evaporation law as applied through the definition of the vapour
molar fraction at the droplet surface (χneq,s):

χneq,s = χeq,s −
(

2LK
D

)
β, (14)

where the equilibrium (subscript eq) contribution is obtained by equating the vapour
and liquid fugacities (or chemical potentials) at the surface. For ‘low’ pressure this
yields χeq,sPG = Psat where the saturation pressure (Psat) is given by the Clausius–
Clapeyron relation. Therefore:

χeq,s =
Patm

PG
exp

{
LV

(R/WV )

(
1

TB,L
− 1

Td

)}
, (15)

where Patm is atmospheric pressure, TB,L is the liquid boiling temperature [i.e. Tsat
(Patm)]. Note that the ratio Patm/PG in front of the above exponential is generally
neglected in the droplet evaporation literature which is strictly valid only for constant
atmospheric pressure flows. The non-equilibrium correction is formulated in terms of
the molecular Knudsen layer thickness (LK) defined by:

LK =
µTG
(
2πTd(R/WV )

)1/2

ScGPG
, (16)

where the accommodation coefficient has been assumed to be equal to unity. In
the present work, the Knudsen layer thickness is defined using the true carrier gas
viscosity (µTG ) rather than the scaled simulation viscosity (discussed below) in order
to maintain physically meaningful lengthscales for the Knudsen layer. Finally, the
vapour surface mass fraction is calculated directly from the molar fraction:

YV,s =
χneq,s

χneq,s + (1− χneq,s)WC/WV

, (17)

in terms of the ratio of the carrier gas and the vapour molecular weights.
The droplet conservation equations (8)–(10) suggest that the response time constant

is approximately equal to τd for the droplet velocity and temperature, as well as for the
relative evaporation rate ṁd/md which appears in the latent heat term of the droplet
energy equation. Furthermore, note that although (10) is implicit in ṁd (through the
term β in (14)), Miller et al. (1998) have shown that this equation can be solved
without iteration by using the previous timestep values for β because: (i) β is in
general a slowly varying parameter, and is a constant for droplets obeying the ‘D2

law’, and (ii) for both low evaporation rates and for droplet sizes D > 50 µm non-
equilibrium contributions to the surface mole fraction are generally small. In this
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sense, the Langmuir–Knudsen model is no more computationally intensive than the
commonly used rapid mixing model (Spalding’s ‘D2 law’ coupled with an infinite
liquid thermal conductivity droplet temperature equation) which is recovered by the
present model as βLK/D → 0 (see (14)); however, the present model is applicable over
a wider range of droplet sizes and evaporation rates for which non-equilibrium effects
become significant. Additionally, the modelled droplet energy equation (equation (9))
can also be applied to non-evaporating (solid) particles using the limit f2 → 1 as
β → 0.

2.3. Phase coupling, enthalpy, internal energy and latent heat

The choice of a Lagrangian reference frame for the individual droplet conservation
equations leads to the following general form for the phase-coupling terms appearing
in (1)–(5):

SI = −∑
α

{
wα

∆Vα
[ṁd]α

}
, (18)

SII,i = −∑
α

{
wα

∆Vα
[Fi + ṁdvi]α

}
, (19)

SIII = −∑
α

{
wα

∆Vα

[
viFi + Q+ ṁd

{vivi
2

+ hV ,s

}]
α

}
, (20)

where the summations are over local individual droplet contributions, hV ,s is the
evaporated vapour enthalpy at the droplet surface (discussed below), and the single
droplet evaporation rate (ṁd), drag force (Fi) and heat transfer rate (Q) are specified by
the modelled droplet conservation equations, (8)–(10). The local summations in (18)–
(20) are necessarily grid-dependent functions; the summations are over all droplets
(subscript α indicates the individual droplet variables; no summation over Greek
indices) residing within a local numerical discretization volume (∆Vα) and employ a
geometrical weighting factor, wα (discussed below).

In the above form, the phase-coupling terms are in agreement with the derivations
of Jackson & Davidson (1983) and Young (1995) for Eulerian dispersed-phase flow
descriptions, and also with those of Mashayek (1998a,b) which were used to simu-
late the Lagrangian evolution of evaporating droplets in homogeneous turbulence.
Note that neither of the first two citations addresses the evaluation of hV ,s, whereas
Mashayek only considers flows for which the liquid and vapour heat capacities are
equal and constant, in which case the correct evaluation of the vapour enthalpy is
greatly simplified. In the discussions below, a more general derivation of the vapour
surface enthalpy and related variables is presented.

Specification of the vapour enthalpy must be considered carefully in order to
provide a thermodynamically self-consistent description of the surface enthalpy (hV ,s),
the latent heat of evaporation (LV ) and the gas-phase internal energy (eG) (eG is used
to evaluate the local gas temperature). Consider the enthalpy definitions for the liquid
(hL) and evaporated vapour (hV ) for thermally perfect species:

hL =

∫ T

0

CL(T ′) dT ′ hV =

∫ T

0

Cp,V (T ′) dT ′ + h0
V . (21)

The reference enthalpy for the liquid is taken to be zero at T = 0 (also assumed
for the carrier gas, i.e. h0

C = h0
L = 0), whereas a non-zero reference value is required

for the vapour (h0
V ) because the evaporated vapour and the liquid enthalpies cannot
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be defined independently of one another (being the same species). The definition of
the latent heat, LV = hV ,s − hL,s (for all droplet surface temperatures), provides the
relationship between the liquid and vapour necessary to determine h0

V . Substituting
(21) into this definition yields:

h0
V = LV (T ∗) +

∫ T ∗

0

[CL(T ′)− Cp,V (T ′)]dT ′, (22)

which must be a constant to be a meaningful reference condition. As expected, the
Clapeyron relation:

∂LV

∂T
= −[CL(T )− Cp,V (T )], (23)

reveals that h0
V is indeed a constant (as a result of the integration constant), and is

therefore independent of the evaluation temperature T ∗. Physically, (22) states that h0
V

is simply the latent heat evaluated at the reference temperature (here h0
V = LV (T = 0))

and can be determined using standard correlations for LV as a function of temperature
(although only if the correlation is physically meaningful at the reference temperature).
However, for more restrictive thermodynamic assumptions, such as constant heat
capacities, the ‘best’ determination of h0

V is not so readily apparent.
In the present study, all species are assumed to be calorically perfect and therefore

have constant heat capacities. This assumption simplifies numerical calculations sub-
stantially by removing the necessity of integrating heat capacity correlations in order
to determine enthalpies and internal energies. Under these conditions the definition
of h0

V in (22) reduces to:

h0
V = LV (T ∗) + (CL − Cp,V )T ∗, (24)

which again must be independent of the reference temperature T ∗. The reference
enthalpy is ‘best’ determined using correlations for the latent heat and constant heat
capacities evaluated at a reference temperature T ∗ equal to the approximated average
droplet temperature for the specific flow under consideration. Thereafter, the heat
capacities and h0

V retain their constant values and LV takes the linear form implicitly
suggested by (24). With this procedure, the latent heat is ‘exact’ when the droplets are
at temperature Td = T ∗ and deviates from the ‘real’ correlation for Td 6= T ∗ only in as
much as the correlated LV deviates from the linear approximation. One example of an
appropriate T ∗ is the liquid wet bulb temperature (TWB) as suggested by Miller et al.
(1998) for constant property evaluations for use in single-droplet evaporation models;
they provide an empirical relation for estimating TWB as a function of the free-stream
temperature for several hydrocarbon species and also provide all necessary property
correlations for benzene, decane, heptane, hexane and water.

In view of the above discussions, expressions for the vapour surface enthalpy, the
latent heat and the gas phase mixture internal energy are now specified for calorically
perfect species as:

hV ,s = Cp,VTd + h0
V , (25)

LV = h0
V − (CL − Cp,V )Td, (26)

eG = (1− YV )[Cv,CTG] + YV
[
Cv,VTG + h0

V

]
, (27)

respectively (the droplet surface temperature is Td,s = Td owing to the assumption of
infinite liquid thermal conductivity). Note that an assumption of constant latent heat is
only consistent with CL = Cp,V from (23). This approach, which was used by Mashayek
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Figure 1. Schematic of the two-phase, temporally developing mixing layer.

(1998a, b), removes the necessity of calculating the reference enthalpy (which reduces
to h0

V = LV = constant, by (24)) and therefore simplifies the specification of the gas
temperature through (27). Furthermore, by using the definitions of h0

V , LV and (8)–
(10), the phase coupling terms given by (18)–(20) may now be expressed equivalently
as:

SI = −∑
α

{
wα

∆Vα

[
d

dt
(md)

]
α

}
, (28)

SII,i = −∑
α

{
wα

∆Vα

[
d

dt
(mdvi)

]
α

}
, (29)

SIII = −∑
α

{
wα

∆Vα

[
d

dt

(
mdCLTd + 1

2
mdvivi

)]
α

}
, (30)

where the three time derivatives clearly depict the total rates of change of the
individual droplet mass, momentum and total energy, respectively.

3. Mixing-layer configuration and approach
The flow configuration considered is that of a three-dimensional temporally devel-

oping, mixing layer formed by the merging of a pure gas stream with a hydrocarbon-
droplet-laden, parallel-flowing stream. In the temporally developing reference frame,
the numerical domain moves with the mean convective velocity of the primary span-
wise vortices which are therefore observed to grow in time, in contrast to spatial
growth observed in experiments and spatially developing simulations (see e.g. Riley,
Metcalfe & Orszag 1986 for a discussion of the temporally developing mixing-layer
simulation technique). Figure 1 shows a schematic of the simulation domain used in
this study. In this coordinate system the free-stream mean velocities are equal and op-
posite (±U0), and the streamwise, cross-stream and spanwise coordinate directions are
denoted as x1, x2, x3 (with corresponding domain lengths L1, L2, L3), respectively.
In this reference frame, boundary conditions are periodic in both the streamwise and
spanwise directions, whereas we choose to use adiabatic slip-wall conditions for the
cross-stream (x2) boundaries (discussed below). The initially unladen stream (x2 > 0)
is a pure gas phase flow with parameters denoted by the subscript (US ), whereas
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the initially laden stream (x2 < 0; subscript LS) is randomly seeded within homoge-
neous x1 − x3 planes with specified mean number density profile as a function of x2.
The initial cross-stream dependencies of the mean velocity, tracer scalar magnitude
and droplet number density profiles are specified using an error function profile,
A(x2) = ALS + 0.5[1 + erf(π1/2x2/δw,0)](AUS −ALS ), where A is the specific field ampli-
tude, δw,0 is the specified initial value of the vorticity thickness (subscript 0 denotes
initial conditions). The vorticity thickness is defined by δw(t) = ∆U0/〈∂u1/∂x2〉|max,
where ∆U0 = 2U0 is the mean velocity difference across the layer and the angle
brackets denote spatial averaging of Eulerian variables over homogeneous x1 − x3

planes.
Both two-dimensional and three-dimensional instabilities are excited through flow

forcing using a procedure described in Moser & Rogers (1991). Spanwise and stream-
wise velocity disturbances are generated and then superimposed onto the initial mean
error function velocity profile. In practice, the initial velocity perturbation is extracted
from a more conveniently specified vorticity perturbation using an iterative Jacobi
Poisson solver. Following Moser & Rogers (1991), a fundamental spanwise vorticity
disturbance is here first generated as ω3(x1, x2) = −f(x2) sin(πx1/λ1), with wavelength
λ1 = 7.29δω,0 and Gaussain cross-stream distribution f(x2) = exp (−πx2

2/δ
2
ω,0). A single

vortex pairing is obtained by superimposing an additional disturbance with wave-
length equal to 2λ1 and having a relative amplitude of 0.5f(x2). Three-dimensionality
is introduced by superimposing a secondary streamwise vorticity disturbance with
distribution ω1(x2, x3) = f(x2) cos {2πx3/(0.6λ1)}. The relative amplitudes of the spec-
ified spanwise (F2D) and streamwise (F3D) perturbations are equal to the ratio of
the respective disturbance circulations relative to the approximated circulation of the
mean velocity profile (λ1∆U0).

3.1. Numerical procedure

The numerical solution procedure is based on a scheme derived by Kennedy &
Carpenter (1994) and uses an explicit fourth-order accurate Runge–Kutta temporal
integration (for both the gas phase and the Lagrangian droplet equations) cou-
pled with eighth-order accurate central finite-difference approximations for all spatial
derivatives (seventh-order inward boundary closures for the x2 coordinate). The nu-
merical mesh is analytically compressed in the cross-stream direction with maximum
compression along the centreline. Both the streamwise and spanwise directions employ
periodic boundary conditions, whereas the cross-stream adiabatic slip-wall conditions
in the free streams (x2 = ± 1

2
L2) are implemented using the viscous compressible flow

boundary method of Poinsot & Lele (1992). In this procedure for slip conditions, the
governing equations are solved in characteristic form on the x2 boundaries whereby
inwardly propagating waves are modelled as the negative of the corresponding outgo-
ing wave decompositions (i.e. perfectly reflecting conditions). Slip walls are chosen for
two primary reasons: (i) to remove the treatment of droplets entering and exiting the
domain which must be addressed for free shear flow boundaries, and (ii) the resulting
‘closed system’ simplifies the numerical confirmation of mass and energy conservation
since a fixed quantity of mass and energy are tracked and the x2 boundaries are
adiabatic impermeable walls.

The Lagrangian droplet transport equations, (7)–(10), require the knowledge of
the gas phase flow variables evaluated at the local droplet position. In general,
these locations will not coincide with grid point locations; therefore, a fourth-order
Lagrange procedure employed by Mashayek et al. (1997) is modified for compressed
grids and is used for the necessary interpolations. This interpolation procedure has
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been shown by Balachandar & Maxey (1989) to compare well with a complete
spectral interpolation. Furthermore, the droplet evaporation rate (equation (10))
is only iterated once, during initialization, for reasons described above. Thereafter
equation (10) is explicitly marched forward in time using the previous timestep value
for the non-dimensional evaporation parameter β appearing in equation (14).

Owing to the mixed Eulerian/Lagrangian formulations for the gas/droplets, the
local summations appearing in the right-hand side source terms in equations (18)–
(20) are necessarily grid-dependent functions. In this case, the summation is over
the geometrically weighted (wα) contributions from all individual droplets (denoted
by subscript α) residing within the discretization range (i − 1, i + 1), (j − 1, j + 1),
(k− 1, k+ 1) centred around each numerical grid point with array indices (i, j, k) and
∆Vα = (∆x1∆x2∆x3)α is the computational grid volume at the location of droplet α. In
practice, the contributions from each individual droplet are added to its eight nearest
neighbour grid points using a geometrical weighting based on the distance between
the droplet and each of the surrounding nodes. The resulting source terms (equations

(18)–(20)) are then minimally smoothed (indicated by the hat notation, Ŝ , in equations
(1)–(5)) using a local procedure whereby the source at each individual grid node is
shifted towards the surrounding six nearest node average (with coefficient 0.75). This
procedure is found to be necessary even for very small droplet mass loadings owing
to the spatial ‘spottiness’ of the source terms which can lead to artificial oscillations
with low-dissipation differencing schemes. Thorough testing performed during the
course of the present work showed that the solutions are stabilized and well resolved
using this smoothing procedure, and that the results are essentially independent of
the smoothing coefficient. Additionally, the smoothing procedure is conservative such
that the volume integrated transfer source terms are unaltered by the operation. This
is in contrast to the high-wavenumber energy truncation associated with pseudo-
spectral simulations or with ‘filtering’ in large-eddy simulations which both result in
losses in the coupling terms appearing in the gas phase transport equations. This
smoothing procedure does, however, result in a somewhat artificial spatial ‘spreading’
of coupling contributions of individual droplets (in addition to that occurring from
transferring the point particle contributions to the Eulerian grid). Nevertheless, it is
currently, and will probably remain, computationally impossible to perform a ‘true’
DNS of two-way coupled flows with large numbers of droplets for which all scales
are completely resolved (including the droplet boundary layers). In this sense, it may
be more appropriate to refer to this type of simulation as a ‘smoothly coupled direct
gas simulation’; however, the term DNS has already been accepted in the two-phase
literature and will continue to be used hereinafter.

Specification of the timestep for each simulation is based on consideration of both
a maximum unity Courant number and on the particle time constant such that
initially ∆t/τd,0 < 0.1. Further consideration of ∆t is related to the decreasing τd
(due to evaporation); when the droplet’s Stokes number, St ≡ τd∆U0/δω,0, reaches
0.05 (equivalent to a 99% mass reduction for droplets with St0 = 1) evaporation
is stopped so as not to render ∆t overly large. Therefore, the maximum relative
timestep is ∆t/τd ≈ 2, which is the same value used by Martin & Meiburg (1994) in
studying solid particle dispersion in a two-dimensional mixing layer. The Lagrangian
droplet equations are therefore well resolved for all times, regardless of the decrease
in τd owing to evaporation. The governing equations for the ‘completely evaporated’
droplets are thereafter integrated with the evaporation artificially halted (ṁd ≡ 0), so
that only droplet drag and convective heat transfer effects are included (note that the
corresponding droplet mass is relatively small and no significant velocity slip or flow
modulation is expected to be incurred by these droplets).
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3.2. Flow parameters and properties

The majority of the available flow parameters and dimensions corresponding to the gas
flow are held constant for all simulations in order to simplify the analysis of the results.
The domain dimensions are chosen to be L1 = L2/1.25 = L3/0.6 = 2λ1 = 0.2 m.
Note that the choice of a physical lengthscale is generally arbitrary for a given
set of non-dimensional flow parameters; however, the use of uTG in the definition
of LK (equation (16)) results in scale dependence for the droplet evaporation rates.
Therefore, the value L1 = 0.2 m was chosen in order to produce physically reasonable
initial droplet sizes (see below). The elongated cross-stream domain size reduces
boundary condition effects and provides adequate room for the mixing layer to grow,
whereas the value L3/0.6 corresponds to the most unstable spanwise disturbance
wavelength for incompressible flow (see e.g. Moser & Rogers 1991). The convective
Mach number is chosen to be Mc = U0/a0 = 0.5 (the speed of sound, a, is initially
uniform) in order to yield reasonable computational timesteps while retaining the
general behaviour of low-speed mixing layers. This choice is justified by the linear
stability analysis performed by Sandham & Reynolds (1990) which showed that
compressible instability modes are not significant for Mc < 0.6, and also by the DNS
performed by Samimy & Lele (1991) of the dispersion of solid particles in a two-
dimensional planar mixing layer which found no significant compressibility effects on
the dispersion process over the range 0.2 6Mc 6 0.6. The initial Reynolds number is
Reω = ρG,0∆U0δω,0/µG = 200, and the initial flow field is isobaric with P0 = Patm and
isothermal with TG,0 = 350 K. The passive tracer is used to mark the initially laden
and unladen stream fluids, and is initialized as φ = 0 in the laden stream and φ = 1
in the unladen stream (the tracer is only used in a limited manner in the following
discussions in order to conditionally average variables on the laden stream gas flow,
i.e. φ < 0.5). As already discussed, the droplets are initially randomly distributed
throughout x1 − x3 planes using the error function for the mean number density
profile as a function of x2. The initial droplet slip velocity is null, the initial diameter
(D0) is based on a specified value for St0, and the constant initial droplet temperature
is Td,0 = 325 K unless otherwise noted. The above set of parameters are chosen in
order to yield evaporation timescales approximately equal to the mixing-layer growth
timescale; the limiting behaviour of very slow (or rapid) evaporation rate is similar
to solid particle (or single-phase) flow, and is therefore not of interest in the present
study. Furthermore, the grid resolution is in all cases chosen to be 96 × 128 × 64
grid points in the x1; x2; x3-directions, respectively, and is compressed in x2 with
∆x2/∆x1|min ≈ 0.6 at x2 = 0. The normalized forcing amplitudes are F2D = 0.10
and F3D = 0.0175 (unless otherwise noted) which are found to provide relatively
strong two-dimensional and three-dimensional roll-up and vortex pairing (see Moser
& Rogers 1991 for a discussion of the effects of the forcing amplitudes in single-phase
flow).

The two species chosen for consideration in this study are: (i) air for the carrier
gas, and (ii) decane for the liquid/vapour hydrocarbon (chosen for its large molecular
weight and latent heat). Only relatively small evaporation rates are studied as quan-
tified by the gas temperature relative to the liquid boiling temperature. In this case,
the deviations between the initial droplet temperature, wet bulb temperature and gas
temperature are relatively small and it is considered appropriate to use T ∗ = TG,0
as an appropriate reference condition for property evaluations. Therefore, all heat
capacities, the gas Prandtl number, the ‘true ’ air viscosity and vapour reference en-
thalpy are all evaluated at T ∗ = 350 K from correlations found in Miller et al. (1998),
and the Lewis number (LeG) is assumed to be unity (i.e. ScG = PrG). However, in
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Property Value

WC 28.97 kg (kg mole)−1

WV 142.0 kg (kg mole)−1

Cp,C 1004.8 J kg−1 K−1

Cp,V 1939.6 J kg−1 K−1

CL 2520.5 J kg−1 K−1

PrG 0.697
µTG 2.094× 10−5 kg m−1 s−1

ρL 642 kg m−3

TB,L 447.7 K
h0
V 5.35× 105 J K−1

Table 1. Property values used in the simulations (evaluated at T ∗ = 350K and atmospheric pressure
from correlations for air and decane found in Miller, Harstad & Bellan 1998). The subscripts C
and V denote the carrier gas and evaporated vapour, respectively.

order to provide a full resolution of the flow, the gas phase viscosity is defined using
an artificially inflated value calculated from a specified Reynolds number, Reω . In this
sense, the species are essentially ‘pseudo-air’ and ‘pseudo-decane’; however, effects due
to realistic air-hydrocarbon molecular weight ratios, heat capacity ratios and latent
heat magnitude are retained. The constant property values used in the simulations
are provided in table 1. Simple evaluations show that the thermal response time for
these properties is somewhat larger than the corresponding velocity and evaporation
(ṁd/md) response times because f2Nu/(3PrG)Cp,G/CL ≈ 0.4 in (9) for small Resl and
Reb, whereas f1 ≈ 1 in (8) and Sh/(3ScG) ≈ 0.96 in (10) under the same conditions.

4. Results
Table 2 presents the parameters of the simulations which were performed for this

study. The two primary parameters describing the simulations are the liquid mass
loading ratio ML = Nmd,0/(

1
2
ρG,0L1L2L3), defined as the total mass of liquid relative

to the total mass of gas in the laden stream at time t = 0 (N is the total number
of droplets), and the initial droplet Stokes number St0 = τd,0∆U0/δω,0. The results of
simulations run 0 – run 7 elucidate the effects of these parameters over the ranges
0 6 ML 6 0.35 (with fixed St0 = 1.02) and 0.50 6 St0 6 2.00 (with fixed ML =
0.125). The effects of the streamwise forcing amplitude and initial droplet temperature
are explained by comparing results from simulations run 8 and run 9 to those of run
4, while simulations run 10 and run 11 correspond to ‘solid particle’ dispersion with
and without convective thermal energy exchange between phases. We denote as ‘solid
particles’ droplets having the evaporation rate artificially nulled (ṁd ≡ 0) in order to
isolate drag force and convective droplet thermal energy exchange effects.

The range of parameters in table 2 is entirely consistent with the model assumptions.
For example, the maximal initial volume fraction of droplets in the laden stream is
5.5 × 10−4 (for run 5) which is sufficiently small to satisfy the assumptions of the
flow model. Also, extensive testing showed that the single-phase mixing layer is well
resolved for a substantially higher Reynolds number (Reω ≈ 275) than is used for the
simulations. The above parameters were chosen in order to ensure that all simulations
are fully resolved, and a posteriori testing confirmed that this is true. Furthermore,
conservation of total mass and total energy (internal plus kinetic for both phases)
for the closed-system mixing layer was monitored and confirmed for all simulations
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Run ML St0 N Note

0 0 — 0 —
1 0.02 1.02 40 000 —
2 0.075 1.02 150 000 —
3 0.125 1.02 250 000 —
4 0.225 1.02 450 000 —
5 0.35 1.02 700 000 —
6 0.125 0.50 728 863 —
7 0.125 2.00 91 295 —
8 0.225 1.02 450 000 F3D = 0.00175
9 0.225 1.02 450 000 Td,0 = 350 K

10 0.225 1.02 450 000 Td,0 = 350 K ṁd ≡ 0
11 0.225 1.02 450 000 Td,0 = 350 K ṁd ≡ Q ≡ 0†

Table 2. Simulation parameters. All runs have 96× 128× 64 grid points with Mc = 0.5, Reω = 200,
TG,0 = 350 K and Td,0 = 325 K (except as noted). Initial droplet sizes are Do = 115.5 µm, 165 µm
and 231 µm for St0 = 0.50, 1.02 and 2.00, respectively, and the dagger (†) indicates that Q ≡ 0
applies only to the phase coupling in equation (20) and not to the droplet energy equation (9).

(except for run 11 which does not conserve energy owing to Q ≡ 0 in the (20) coupling
terms; although the total relative loss is very small).

All simulations were performed on a Cray J90 supercomputer. The majority of the
computational expenditure occurs in simulating the droplet phase; in particular, in
interpolating the six gas phase variables (ui, TG, PG, YV ) to the droplet locations,
and also in calculating the phase-coupling source terms. The run times range from
approximately 4.7 hours of CPU time for the pure gas flow (run 0), to approximately
27 CPU hours for run 5 with 7.29× 105 droplets.

In presenting the simulation results, we first describe the general evolution of the
mixing layer and the process of evaporative flow saturation (§ 4.1). This is followed
by a detailed analysis of the instantaneous state of the droplet distribution and its
relationship to vortical structures within the layer (§ 4.2). These physical descriptions
then aid in interpreting the statistical flow analysis presented in § 4.3. The discussions
focus primarily on the effects of droplet loading and the initial Stokes number, with
only occasional comments regarding solid particle and other results as they become
relevant (run 8–run 11). In order to keep the presentation as concise as possible,
the majority of statistical analyses will be presented for instantaneous results from
the fully developed mixing layers (at the final simulation times); however, temporal
evolutions of statistical quantities will also be discussed but only in a more limited
extent, as necessary.

4.1. Mixing layer growth and evaporative saturation

An examination of the temporal evolution of integral flow statistics provides insight
into the development of the two-phase mixing layer and the influences of the various
droplet parameters. Figure 2 shows the growth of the layer as characterized by the
normalized vorticity thickness evolution for various values of both the mass loading
ratio and the initial Stokes number. A substantial and increasing attenuation of the
mixing-layer growth is observed in figure 2(a) during the later stages of mixing for
increasing droplet loadings (at fixed St0 = 1.02). Flow visualizations of our results
reveal that the initial spanwise vortex roll-up is completed at a normalized time of
t∆U0/δω,0 ≈ 25. Prior to this time, there does not appear to be any significant influence
from the droplets on the layer growth rate; an analysis of the generated data reveals
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Figure 2. Temporal evolution of normalized vorticity thickness for (a) various values of the initial
liquid loading with St0 = 1.02 (data from simulations run 0 – run 5) and (b) for various values of
the initial Stokes number with ML = 0.125 (data from simulations runs 6, 3 and 7).

that this is primarily due to the fact that the droplets are initialized with zero slip
velocity, and hence zero drag force. It is only after the primary rollers fully develop
and begin the pairing event (t∆U0/δω,0 > 25) that the flow field becomes sufficiently
‘turbulent’ to result in significant velocity slip, and therefore droplet drag acting on
the fluid. Although substanstial phase exchanges of mass and thermal energy occur
prior to the first vortex roll-up (t∆U0/δω,0 < 25), it will become apparent that these
exchanges primarily affect the thermodynamic development of the layer, whereas
the kinematic flow attenuation is primarily governed by the drag force. Figure 2(b)
suggests that there is essentially no influence of the initial droplet Stokes number
(for fixed mass loading ML = 0.125) on the large-scale development of the layer
as characterized by the vorticity thickness (explained below). The oscillations in the
vorticity thickness occurring during the pairing process are created by both vortical
roll-up and pressure reflections from walls and occur at approximately the same time,
and with similar phase and amplitude, for all curves. When considered together with
flow visualizations (not shown), this suggests that it is the rate of mixing-layer growth,
and not the relative vortex roll-up and pairing times, that are modulated by the liquid
phase (i.e. at any given time, all of the simulations are at the same relative point of
roller development, but have different thickness); even simulation run 5, having the
largest mass loading ML = 0.35, displays discernible (though retarded) roll-up and
pairing events. In all cases, the pairing event is completed by t∆U0/δω,0 ≈ 50 at which
point the simulations are terminated.

The flow modulation discussed above appears to be entirely due to effects of mass
loading, with negligible effects from the initial droplet size (figure 2b). This can be
explained by considering the momentum coupling term (analogous to equation (19))
due to Stokes drag which results from stochastic Eulerian dispersed phase descriptions
(e.g. Zhou 1993):

SII,i = −nF ′′i = −n
(
md

dvi
dt

)′′
∼ −ρ̂L

(
usl,i

τd

)′′
, (31)

where n is the Eulerian droplet number density, the superscript double-prime denotes
‘average’ Eulerian variables characterizing local ensembles of droplets, and ρ̂L =
nm′′d is the Eulerian dispersed phase mass density (liquid mass per total mixture
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volume). Equation (31) shows that the total drag force exerted on the gas phase
scales directly with ρ̂L, and therefore also with ML in the simulations. However, the
scaling with droplet size (for fixed ρ̂L or ML) is not obvious as the droplet time
constant (τd) and the slip velocity (usl,i = ui − vi) are both expected to be increasing
functions of the droplet size. In fact, for steady gravitational drift at low-droplet-
slip Reynolds numbers, usl,i/τd = gi, i.e. the ratio of the slip velocity relative to the
droplet time constant is independent of the droplet size for uniform accelations.
This argument can be extended to time dependent accelerations (i.e. g → g(t)) if
the characteristic timescale for g(t) is significantly larger than the droplet response
time (τd). For the present flow, the timescale δω,0/∆U0 characterizes the acceleration
field acting on the droplets; this means that usl,i/τd is approximately constant for
Stokes numbers sufficiently smaller than unity. Since St decreases from initial values
owing to evaporation (quantified below), the total drag force should also be relatively
independent of the droplet size for fixed liquid mass loading (as observed in figure 2b).
Of course, the relatively simple analysis using (31) neglects nonlinear f1 corrections
due to finite droplet Reynolds numbers which may change the scaling for sufficiently
large slip velocity. Effects due to variations of the Stokes number may therefore occur
if sufficiently large St0 values are considered. Nevertheless, the results of figure 2
clearly reveal that the mass loading ratio has the dominant effect on the mixing-layer
evolution, and that variations in the droplet size over the range 0.5 6 St0 6 2.0 have
a negligible influence on the flow modulation. These results support previous trends
suggested by Squires & Eaton (1990) from DNS of stationary isotropic turbulence
laden with solid particles. Their tabulated data show relatively negligible effects of the
particle size on the integrated turbulence energy for cases with St = 0.15 and St = 0.52
(for fixed particle loadings in the range 0.1 6 ML 6 1.0). In contrast, Elghobashi
& Truesdell (1993) reported variations in turbulence energy and dissipation as a
function of the Stokes number in their DNS study of solid particle dispersion in two-
way coupled isotropic turbulence when fixing the total number of particles instead of
ML; the present results indicate that this is not an appropriate manner for studying
Stokes number effects.

The normalized total mass of liquid in the mixing-layer domain (ML =
∑N

md) and
the corresponding normalized total mass of evaporated vapour ((ML,0 −ML)/MC;
the total mass of carrier gas is MC and is a constant for all simulations and all
times) are depicted in figure 3 as a function of time for the same simulations as those
presented in figure 2. These results show that the only simulation which achieves
complete evaporation of the liquid droplets is run 1, characterized by the smallest
mass loading ML = 0.02. All other simulations appear to approach a state of quasi-
steady evaporative saturation for which a zero rate of liquid loss is asymptotically
approached; furthermore, the total mass of liquid at the saturation stage is nearly
independent of the initial loading ratio (discussed below). The Stokes number effects
observed for early times in figures 3(c) and 3(d) (although the same final saturation
state is apparently approached by all curves) are attributed to the fact that small-
droplet size distributions lose mass at a faster rate relative to larger droplets with fixed
total liquid mass. Indeed, if the superscripts a and b denote two different monodisperse
size classes for droplets evaporating according to the ‘D2 law’ (i.e. with dD2/dt = K ,
where K is constant), it can be shown that, at fixed ML,

N(a)ṁd
(a)

N(b)ṁd
(b)

=

(
D(b)

D(a)

)2

. (32)

Thus, if D(b) > D(a), then the total liquid evaporation rate integrated over all droplets
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Figure 3. Temporal evolution of the total liquid mass normalized by the initial value ((a),(c)) and
the total evaporated liquid mass normalized by the total carrier gas mass ((b),(d)), for (a),(b) various
values of the intial liquid loading with St0 = 1.02 (data from simulations run 0 – run 5) and (c),(d)
for various values of the initial Stokes number with ML = 0.125 (data from simulations runs 6, 3
and 7).

is larger for the small droplets with diameter D(a). As should be expected, the relative
ratio of the total mass loss rates is a function of the droplet surface areas available
for evaporation. These arguments explain the early time deviations between the
various curves in figures 3(c) and 3(d) owing to the initially smaller Stokes numbers
evaporating total liquid mass more rapidly. Nevertheless, the asymptotic total mass
of liquid evaporated is nearly independent of St0.

4.1.1. Effects of initial droplet temperature and flow three-dimensionality

An examination of the evoultions of the mean droplet temperature (averaged over
all droplets) and the normalized total liquid mass are presented in figure 4 for sim-
ulations run 4 and run 9 which have Td,0 = 325 K and Td,0 = 350 K, respectively
(ML = 0.225, St0 = 1.02). The mixing layer is non-homogeneous and figure 4 there-
fore does not carry any information as to the cross-stream variations of the droplet
temperatures and sizes; however, these figures are useful in explaining the saturation
process. Evaporation commences immediately, even when the slip temperature is ini-
tially null because the slip vapour fraction is non-zero. Thereafter, the latent heat acts
to drive the droplet temperature towards the quasi-steady wet bulb temperature as
observed in figure 4(a) (for a given fuel, the wet bulb temperature is predominantly
a function of the local gas temperature and not the dropet size; see e.g. Miller et
al. 1998). The flow then continues to develop in a manner similar to that already
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Figure 4. Temporal evolutions of integral flow statistics for different values of the initial droplet
temperature (ML = 0.225, St0 = 1.02) corresponding to simulations runs 4 and 9: (a) mean droplet
temperature averaged over all droplets, (b) total liquid mass normalized by the initial value.

observed in the previous figures (the small temperature oscillation in figure 4(a) at
intermediate times coincides with the conclusion of the primary spanwise vortical roll-
up). The mean temperatures in figure 4(a) adjust from their initial values relatively
rapidly, on a timescale approximately equal to τd,0, consistent with (9). In a related
issue, these results indicate that for initial conditions using arbitrary initial droplet
velocities, the slip velocity will also be equilibrated on the same timescale (τd) as the
droplet temperature (see (8)); this was confirmed using an additional simulation (with
vi,0 = 2ui,0) not reported in this paper. Finally, the liquid mass evolutions in figure 4(b)
suggest that saturation occurs for both flows with slightly more evaporated mass for
larger initial droplet temperatures.

As an additional observation, we note that the weak F3D forcing used in run 8
shows some expected change in the development of the vorticity thickness owing to
the weaker integrated initial velocity disturbance and very weak streamwise vortices;
however, the overall effect on saturation is not qualitatively significant (not shown).
The above discussions therefore illustrate that while the influence of the initial droplet
temperature and flow three-dimensionality have quantitative effects on the final state
of the flow, the qualitative droplet evolutions are not significantly affected by these
parameters. The remaining discussions therefore focus primarily on the effects of ML
and St0; with the influences of F3D and Td,0 understood to be qualitatively similar.

4.1.2. Mean slip variable profiles

The physical mechanisms responsible for the evaporative saturation observed in the
previous figures can be explained in terms of the two primary slip variables driving
the individual droplet evaporation rates (note that the slip velocity also contributes
to the evaporation rate through the Nusselt and Sherwood numbers; however, in the
present simulations the droplet Reynolds numbers are generally Resl ∼ 1 (not shown)
and therefore effects due to Usl should be of second order). An examination of the
droplet temperature and mass transport equations (equations (9) and (10)) shows that
the evaporation rate is: (i) related directly to the slip vapour fraction, and (ii) related
(indirectly) to the slip temperature through the droplet energy equation. Therefore, in
order to saturate the flow and cease the liquid evaporation, these slip variables must
be nulled by either changing the droplet surface conditions and/or by modulating
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Figure 5. Cross-stream variation of the vapour mass fraction statistics at time t∆U0/δω,0 = 50
for various values of the initial liquid loading (St = 1.02): (a) mean vapour mass fraction in the
gas phase (b) mean droplet surface vapour mass fraction. The data correspond to the results of
simulations run 0 – run 5.

the flow in an appropriate manner (see also Bellan & Cuffel 1983 on criteria for
saturation).

In order to aid in the analysis of the slip variables and other forthcoming statis-
tical analyses, we introduce two averaging operators. Hereinafter, the single bracket
notaion 〈 〉 is used to denote averages of Eulerian (gas phase) variables over grid
points, whereas the double bracket notation 〈〈 〉〉 denotes averaging of Lagrangian
(droplet) variables over the ensemble number of droplets. These statistics quantities
are generally presented as a function of x2 with the averages being performed over
homogeneous x1–x3 planes, and therefore conditionally on the cross-stream coor-
dinate location. This is achieved for Eulerian variables using the ensemble of grid
points defining each homogeneous computational plane, whereas Lagangian droplet
statistics are calculated by averaging over the number of droplets located within each
of 25 equal interval bins dividing the x2 length of the domain.

Figure 5 illustrates 〈YV 〉 and 〈〈YV,s〉〉 and thus provides insight into the first-order
statistical behaviour of the slip vapour fraction as a function of the cross-stream
coordinate at the final simulation time t∆U0/δω,0 = 50. The profiles in figure 5(a)
show that the vapour fraction in the laden stream approaches a nearly uniform value
which is independent of the initial mass loading ratio for cases in which saturation
occurs (0.075 6ML 6 0.35). This uniform mass fraction is approximately equal to the
corresponding mean surface fraction (YV , s) for droplets in the laden stream (figure 5b)
indicating that the mean evaporation has essentially ceased. However, within the
layer, the slip vapour fractions are relatively large, indicating that droplets which are
entrained into the layer continue to evaporate. At the final simulation time shown
in the figure, both the gas phase vapour and the droplets penetrate approximately
one vorticity thickness into the pure gas stream for all cases studied. The increase in
gas phase vapour fractions with ML at the centre of the layer (figure 5a) is directly
related to the available liquid mass in the non-saturated regions. An analysis of the
simulated results suggests that a continual entrainment of droplets caused by the
growth of the layer is the primary reason that the total liquid evolutions in figure 3
do not reach exactly steady values. The absence of a curve for case ML = 0.02 in
figure 5(b) is due to the droplets having reached the minimum size corresponding to
St = 0.05 and being treated as solid particles at this time.
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Figure 6. Cross-stream variation of temprature statistics at time t∆U0/δω,0 = 50 for various values
of the initial liquid loading (St = 1.02): (a) mean gas temperature, (b) mean droplet temperature,
(c) mean slip temperature at droplet locations. The data correspond to the results of simulations
run 0 – run 5.

The mean temperature profiles presented in figure 6 show that it is not only the
build-up of vapour in the gas phase which is responsible for saturation. At time t = 0,
the droplets (at Td,0 = 325 K) are exposed instantaneously to the relatively higher
temperature isothermal flow at TG,0 = 350 K. The droplets are then quickly heated
to a quasi-steady wet bulb temperature as was shown previously in figure 4 with the
thermal equilibration occurring on a timescale approximately equal to τd (see equation
(9)). Therefore, for St < 1 the droplet temperature is able to adjust to the surrounding
flow conditions relatively rapidly. Simultaneously, the phase-coupling terms act to
reduce the gas temperature in the laden stream through convective heat exchange.
Figure 6(a) shows the final time mean gas temperature profiles which clearly reveal
the decrease in TG both within the layer and in the laden stream (x2 < 0). All of the
evaporating simulations reach an approximately equal thermodynamic state in the
laden stream, except for ML = 0.02 which completes evaporation before this state
is obtained. The droplets and gas in the laden stream therefore appear to be driven
towards an equilibrium at a temperature of approximately 330 K, which is primarily
a function of the liquid properties (e.g. LV , CD) and not ML. On the other hand, the
mean droplet temperature profiles (figure 6b) appear qualitatively similar to those of
the surrounding gas phase with the exception of case ML = 0.02 which displays a
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Figure 7. Cross-stream variation of the normalized mean droplet mass at time t∆U0/δω,0 = 50 for
various values of (a) the initial liquid loading (St = 1.02; results from simulations run 0 – run 5),
(b) the initial droplet Stokes number (ML = 0.125; results of simulations runs 6, 3 and 7).

large peak at the x2 = 0 centre plane in addition to a minor peak at x2/δω ≈ 0.8.
In this case, the droplets are completely evaporated at the final time (figure 3a) and
are in approximate thermal equilibrium with the surrounding gas owing to small
thermal inertia; therefore, 〈〈Td〉〉 6= 〈TG〉 from figure 6(a) because the droplets are
preferentially concentrated into streak structures (to be shown) and only a biased
sample of locations are represented in the averaging of figure 6(b).

The mean slip temperature calculated at the droplet locations, quantified in fig-
ure 6(c), shows nearly zero mean slip temperature in the laden stream, but mean pos-
itive slip temperatures within the layer. The mean slip temperature of the ML = 0.02
simulation droplets (solid particles at this time) is insignificant for all cross-stream
locations (although local regions of persistent slip temperature do exist (see below)
for solid particles within the layer, these effects become negligible through averaging).
The curve for case ML = 0.075, crosses the remaining curves within the layer for
x2 > 0 (see figure 6c) which can be attributed to the fact that a significant per-
centage (≈ 10%) of droplets are completely evaporated at the final simulation time.
Additional analyses of the results presented in figures 5 and 6 show that they are
essentially unchanged by variations in the initial Stokes number (not shown) owing to
the relative independence of the wet bulb temperature on the droplet size. Finally, the
above results indicate that the saturation process observed within the laden stream
portion of the domain is qualitatively the same as that observed in homogeneous
turbulence by Mashayek (1998a, b); however, the continued evaporation of droplets
penetrating the layer is a unique feature of the non-homogeneous mixing layer.

4.1.3. Droplet mass profiles and PDFs

One consequence of the saturation process is that a quasi-steady distribution of
droplet sizes is formed within the layer. Figure 7 reveals the mean form of this
distribution by presenting the average droplet mass across the layer as a function of
both the mass loading and the initial droplet Stokes number at the final simulation
time. An essentially uniform mean droplet size is found within the laden stream portion
of the domain for all simulations. Droplets penetrating into the layer are in contact
with higher-temperature gas flow and therefore display a mean size distribution
that decreases with penetration depth. The differences in droplet mass observed in
figure 7(b) for varying initial Stokes numbers can be attributed to the fact that the
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Figure 8. Cross-stream variation of the PDF of the normalized droplet mass at time t∆U0/δω,0
= 50 (St = 1.02): (a) simulation run 3 with ML = 0.125, (b) simulation run 5 with ML = 0.35.

larger Stokes number simulation has not completely reached the asymptotic saturation
state; this was explained previously as being due to slower total evaporation rates
resulting from less total surface area available for evaporation for large droplet
size distributions (see figure 3d, equation (32) and related discussions). Note also
that the above droplet mass results do not indicate the relative number density of
droplets across the layer. In fact, the mean number density profiles (figure 16) show
a somewhat similar form with near uniform values in the laden stream and with
decreasing concentration as a function of penetration depth into the layer.

The complete droplet size distributions corresponding to cases withML = 0.125 and
ML = 0.35 (with St0 = 1.02) are illustrated by the probability density function (PDF)
of the normalized droplet mass as a function of the cross-stream coordinate in figure 8
(not joint PDFs). The PDFs are calculated by summing the local droplet contributions
to each of 25 equal interval bins dividing both the droplet mass and the x2-coordinate.
In both cases, an approximate Gaussian droplet mass distribution is found in the laden
stream. Mashayek et al. (1997) also observed near-Gaussian droplet diameter PDFs
from DNS of one-way coupled isotropic turbulence with evaporating droplets obeying
the ‘D2 law’. For two-way coupled DNS of isotropic turbulence laden with evaporating
droplets, Mashayek (1998a) found that the droplet diameter PDFs approach Gaussian
for ML 6 0.25, but become highly skewed for larger mass loadings; these findings are
consistent with the present results in the laden stream portion of the domain. On the
other hand, the interior of the layer is characterized by a wide range of droplet sizes
which decreases in the mean with penetration depth. The slight bulge in the PDF in
figure 8(a) at x2/δω ≈ +0.5 and md ≈ 0 is due to droplets that have achieved complete
evaporation; however, figure 8(b) shows that no droplets have reached this state for
the ML = 0.35 simulation. These PDFs seem to present essential features of the two-
way mass interactions; in fact, the vapour mass fraction (YV ) PDFs in the gas phase
are similar to those observed in figure 8 (see Miller & Bellan 1998 for related results
from simulation run 4). Additional examinations of droplet mass PDFs reveal that
the total range of droplet sizes present within the mixing layer (i.e. the polydispersity)
at the final simulation times increases with both increasing ML and St0.

4.2. Droplet organization and preferential concentration

Before proceeding with a more detailed statistical analysis of the two-phase mixing
layer, it is helpful to first elucidate the instantaneous structure of the dispersed droplet
field. Such an analysis aids in understanding the cross-stream averaged properties pre-
sented thus far, which reveal no information on the actual droplet distributions within
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Figure 9. Instantaneous contour plot of the Eulerian droplet number density at time t∆U0/δω,0 = 50
from run 4 with ML = 0.225: (a) spanwise plane between streamwise rollers at x3/L3 = 0, (b)
spanwise plane interesecting a streamwise roller at x3/L3 ≈ 0.4 (c) streamwise plane in the braid
region at x1/L1 = 0. Darker regions indicate increased magnitude.

x1–x3 planes. The following discussions, therefore, include both flow-visualization and
quantitative graphical results corresponding to instantaneous mixing-layer flow fields;
they are meant to explain the local distribution and behaviour of droplets relative to
the large-scale flow structures. Such information not only helps in the interpretation
of the statistical results, but may also be of importance to the future development
of turbulence models and structural dynamical descriptions of two-phase evaporating
droplets flows.

4.2.1. Flow visualizations

4.2.1.1. Number density distribution

Figure 9 presents contours of the droplet number density for three different planes
within the instantaneous mixing-layer results generated in run 4 (ML = 0.225, St0 =
1.02). The contours are presented at the final simulation time (t∆U0/δω,0 = 50), after
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the completion of the spanwise vortex pairing. The number density is calculated as
an Eulerian field from the instantaneous Lagrangian droplet locations:

n =
∑
α

wα

∆Vα
, (33)

where the summation and the geometric weighting factor (wα) were described in § 3.1.
Inverse shading is used in the figure which highlights larger droplet concentrations
with darker shading. The maximum local number density found in the results of
figure 9 corresponds to a value approximately seven times the initial mean number
density in the laden stream. The number density contours give no indication as to
the liquid mass because they do not contain information on the actual droplet sizes,
which are decreasing in the mean with the penetration depth (see figures 7 and 8).

The number density contours presented in figure 9(a) are for a spanwise symmetry
plane located between the primary streamwise vortices at x3 = 0, and therefore
represent the optimal results for comparisons with both previous two-dimensional
particle dispersion simulations and unforced experiments. The most obvious feature
of this figure is that the primary spanwise vortical region (at x1/δω ≈ 2) formed
by the pairing event is essentially devoid of droplets, whereas a ‘streak’ formation
of enhanced concentration occurs having a maximum in the strained braid region
and wrapping around the outer periphery of the vortical structure (on the laden
stream edge). Similar concentration streaks have been observed previously for solid
particles with St ∼ 1 (Wen et al. 1992; Longmire & Eaton 1992 (for a jet); Martin &
Meiburg 1994; Kiger & Lasheras 1997). For evaporating droplets, this streak brings
droplets into close contact with the higher-temperature unladen stream fluid in the
braid region, thereby enhancing evaporation rates (the gas temperature gradients
are largest across the braids; not shown). As with solid particles, these droplet
configurations are explained by the droplets being centrifuged away from vortical
fluid owing to inertia (particularly at earlier times before substantial evaporation
occurs; St ∼ 1) and congregating in high strain ‘convergence’ regions of the flow;
this is the preferential concentration phenomena described in § 1 (see Eaton & Fessler
1994 for a review). However, we do not find that droplets are laterally dispersed
farther into the unladen stream than fluid particles, as described previously by Chein
& Chung (1987), Lazaro & Lasheras (1992b) and Martin & Meiburg (1994) for
solid particles with St ∼ 1, because the Stokes numbers for evaporating droplets
become � 1 by the time that they fully cross to the unladen stream side of the
layer (figures 7 and 8). These droplets are therefore small enough to closely follow
fluid motions and have insufficient inertia to exhibit enhanced lateral dispersion.
Moreover, the homogenizing influence of the vortex pairing previously observed by
Kiger & Lasheras (1995, 1997) is here somewhat counteracted by evaporation which
drives the droplet size towards a non-homogeneous, monotonically decreasing (with
penetration depth) size distribution (figures 7 and 8).

The number density contours corresponding to a spanwise plane bisecting one
of the streamwise vortices (at x3/δw = 1.2) are illustrated in figure 9(b). In this
case, the presence of the streamwise vortical structure dramatically changes the
appearance of the number density field. The droplets are now centrifuged away
from both the central spanwise and the elongated streamwise vortical regions. The
high concentration streak formations are now located in the highly strained fluid
surrounding the streamwise vortices. This is further illustrated in figure 9(c) which
shows the number density contours in a streamwise plane within the braid region
at x1 = 0. The four counter-rotating streamwise vortices draw the laden stream
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fluid containing droplets upwards and into the unladen stream, while conversely
drawing unladen fluid downwards into the laden stream. This results in the formation
of concentration ‘mushroom’ structures similar to passive scalar formations found
previously for single-phase mixing layers in both experiments (Bernal & Roshko
1986) and in direct simulations (Metcalfe et al. 1987; Miller, Madnia & Givi 1994).
These results reveal that concentration streaks continue to persist for strongly three-
dimensional flow; however, the streaks are highly convoluted in the third dimension.
Thus, for three-dimensional mixing layers, streaks form in strained fluid regions
between spanwise rollers, and are simultaneously wrapped around the periphery of
streamwise vortices, resulting in the formation of secondary concentration mushroom
structures. The implication of the number density contours and the small Stokes
numbers (indicating that the droplets approximately follow the local fluid motions
which also convect the vapour) is that the vapour mass fraction contours have similar
mushroom structures and regions of enhanced vapour ‘streaks’ because the vapour is
produced by the droplets (not shown).

4.2.1.2. Slip velocity distribution

Kiger & Lasheras (1997) presented results from particle dispersion in an exper-
imental mixing layer revealing the existence of persistent regions of positive and
negative slip velocity related to accelerating and decelerating fluid regions, respec-
tively. The distribution of these regions determines the corresponding distribution
of kinetic energy exchange between phases owing to the drag force (e.g. Kiger &
Lasheras 1997). Figure 10 presents contours of the Eulerian slip velocity field, where
the Eulerian representation of any arbitrary droplet variable Ψ is denoted by a
superscript double-prime and is defined as:

Ψ ′′ =
1

n

∑
α

wα

∆Vα
Ψα (Ψ ′′ ≡ 0 if n = 0), (34)

which is an average over local droplets; in figure 10 Ψ = usl = |ui| − |vi| is the slip
velocity magnitude. The Eulerian variable u′′sl can be used to identify regions of the
flow within which the fluctuation kinetic energy is ‘generally’ dissipated by the droplet
drag force (u′′sl > 0) as well as the regions where the droplet drag ‘generally’ enhances
the kinetic energy of the flow (u′′sl < 0). The three planes in figure 10 correspond to
the same data as presented in figure 9, and the contours are labelled in units of m s−1.
Note that the ‘spottiness’ of these fields is related to the intermittent distribution
of droplets, and not to resolution problems. As before, the spanwise plane between
streamwise rollers (x3 = 0) provides for the best comparisons with the approximately
two-dimensional mixing-layer experiments of Kiger & Lasheras (1997). As the fluid is
accelerated around the primary spanwise roller in figure 10(a) (the flow is from right
to left for the laden stream), inertia reduces the acceleration rate of droplets relative
to that of the flow. This results in a region of persistent positive slip velocity below,
and on the leading edge of, the roller (region I; figure 10a). As the fluid then enters
the braid region and is decelerated, inertia causes the droplets to retain momentum
resulting in negative slip velocity (region II; figure 10a). Similarly, region III flow
is experiencing acceleration, whereas two more deceleration regions are identified:
regions IV and V in figure 10(a). These observations are in excellent qualitative
agreement with similar persistent slip regions indicated by Kiger & Lasheras (1997)
who plotted experimentally measured slip velocity vectors (see e.g. their figures 5 and
6); however, their results do not make a clear distinction between regions II and V
identified in figure 10(a).
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Figure 10. Instantaneous contour plot of the Eulerian droplet slip velocity u′′sl at time t∆U0/δω,0 = 50
from run 4 with ML = 0.225: (a) spanwise plane between streamwise rollers at x3/L3 = 0; I and
II are positive; II, IV and V are negative, (b) spanwise plane intersecting a streamwise roller at
x3/L3 ≈ 0.4 (I and III are positve; II is negative), (c) streamwise plane in the braid region at
x1/L1 = 0 (I is positive; II and III are negative). Units are m s−1.

Figures 10(b) and 10(c) show the effects of flow three-dimensionality on the mean
local slip velocities for planes corresponding to those described in figure 9. For the
spanwise plane bisecting the secondary roller (figure 10b), both the accelerating and
decelerating flow regions below the primary spanwise vortex are clearly identifiable
(regions I and II). However, within the initially unladen stream portion of the layer,
all slip velocities are observed to be positive for both the core and braid regions of
the flow. This is indicative of the fluid being accelerated around the edges of the
streamwise vortices (i.e. x3 motion). Although the primary vortical structures exhibit
some flow deceleration, the vortical cores are essentially devoid of droplets (see
figure 9b) and therefore figure 10(b) displays no significant negative slip velocity in
the vortical fluid analogous to region IV in figure 10(a). Figure 10(c) helps to explain
these observations using slip velocity contours in a streamwise plane at x1 = 0. The
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Figure 11. Instantaneous contour plot of the Eulerian droplet slip temperature T ′′sl at time
t∆U0/δω,0 = 50 from run 10 (no evaporation) with ML = 0.225, for a spanwise plane between
streamwise rollers at x3/L3 = 0 (I and III are positive; II, IV and V are negative). Units are degrees
K.

region denoted I contains accelerating fluid and therefore positive slip velocity which is
wrapped around the periphery of streamwise vortices. The decelerating region II fluid
corresponds to braid deceleration fluid analogous to region V depicted in figure 10(a).
Finally, as the laden stream fluid is drawn upwards into the concentration mushrooms,
its x2 motion is decelerated in the cores of the mushrooms, resulting in secondary
regions of persistent negative slip velocity (region III; within both mushrooms).

4.2.1.3. Slip temperature distribution

The above observations lead to the obvious question of whether or not the temper-
ature field exhibits similar persistent slip regions corresponding to the distribution of
thermal energy exchange between the phases. Since, to the authors’ knowledge, this
point has never been addressed, it is useful to first examine the behaviour of solid
particles representing a baseline behaviour. Figure 11 shows the spanwise x3 = 0 plane
contours of the locally averaged Eulerian slip temperature, T ′′sl , calculated from the
instantaneous droplet field from run 10 (ML = 0.225, St = 1.02) using the procedure
defined by (34). These contours can be compared directly to those of figure 10(a)
(although the instantaneous flows are not identical, their qualitative features are the
same). Since there is no evaporation, and since the slip temperatures are everywhere
equal to zero at t = 0, the mean gas and droplet temperatures are both approximately
uniform across the layer and equal to TG,0 (not shown). The regions denoted I–V in
figure 11 are observed to be completely analogous, but inversely related, to regions
I–V for the slip velocity presented in figure 10(a). In run 10, as the fluid is accelerated
around the spanwise structure, it is entering a lower-flow-temperature area associated
with the low-pressure spanwise vortex core (it is not obvious that this occurs when
density variations are present; however, flow visualizations of our results confirm it
to be true, even in the presence of evaporation); therefore thermal inertia causes a
temperature lag for droplets and the slip temperature in region I is negative. Similar
arguments can be made for the remaining regions II–V, explaining the results by
either the relatively high-temperature braid fluid or by the relatively low-temperature
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Figure 12. Instantaneous contour plot of the Eulerian droplet slip temperature T ′′sl at time
t∆U0/δω,0 = 50 from run 4 with ML = 0.225: (a) spanwise plane between streamwise rollers
at x3/L3 = 0 (II and IV are positive; I and III are negative), (b) spanwise plane intersecting a
streamwise roller at x3/L3 ≈ 0.4 (II and III are positive; I is negative), (c) streamwise plane in the
braid region at x1/L1 = 0 (I and II are both positive). Units are degrees K.

vortical fluid. The reason that the slip velocity and slip temperature are so closely cor-
related is in part due to the fact that the droplet’s velocity and thermal response time
constants are both approximately equal to τd (see equations (9) and (10)). Similarly,
we found that the slip temperature for solid particles in the spanwise (x3/L3 = 0.4)
and streamwise (x1 = 0) planes also parallels that of the slip velocity presented in
figures 10(b)and 10(c) (not shown).

Figure 12 reveals a markedly different behaviour of the slip temperature distri-
bution for evaporating droplets: owing to the laden stream fluid temperature being
substantially reduced by latent heat effects (see figure 6), all droplets penetrating
across the x2 = 0 centreplane of the layer experience positive slip temperatures in all
three planes (region IV in figure 12a; region III in figure 12b; region II in figure 12c).
The spanwise plane in figure 12(a) (x3 = 0) between secondary vortices does exhibit
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a small region (III) of negative slip temperature due to the low-pressure vortex core
acting to maintain a slight reduction in fluid temperature; however, very few droplets
are found in the vortex core (i.e. n is small). Inside the laden stream portion of the
domain, the slip temperature is essentially the same as for solid particles (i.e. inversely
related to the slip velocity) because the laden stream flow is quasi-saturated and
the latent heat effects are relatively weak. The concentration mushrooms (figure 12c)
enhance evaporation by drawing droplets with low slip temperatures up and into the
high-temperature unladen stream fluid (region I). A parallel study of contours of the
slip vapour mass fraction (YV,sl = YV,s − YV ) is moot because our results show that
there are no discernible regions of condensation within the flow; thus, the slip mass
fraction is positive definite throughout the domain (not shown).

4.2.2. Conditional averaging on the second invariant

Squires & Eaton (1990) showed that the preferential concentration of solid particles
in isotropic turbulence can be quantified by conditionally averaging the number
density on the second invariant of the fluid deformation tensor. Their results indicate
that particles tend to be centrifuged away from high-vorticity regions and collect
in high-strain regions of the turbulence. The second invariant (IIu) of the tensor
field ui,j = ∂ui/∂xj can be written in terms of the symmetric, sij = 1

2
(ui,j + uj,i), and

anti-symmetric, Ωij = 1
2
(ui,j − uj,i), tensor decompositions as:

IIu = −1

2

∂ui

∂xj

∂uj

∂xi
= − 1

2
(sij+Ωij)(sji+Ωji) = − 1

2
(sijsji+ΩijΩji) = − 1

2
(S2− 1

4
ωiωi), (35)

where S 2 is the squared strain magnitude and ωiωi is the squared vorticity magnitude
(enstrophy). In this form, (35) clearly reveals that strong positive second-invariant
values are composed of predominantly rotational fluid, whereas strong negative values
delineate regions where strain dominates. Squires & Eaton (1990) considered Stokes
numbers in the range 0.075 6 St 6 1.50, and showed that particles with small
(but finite) Stokes numbers display the strongest preferential concentration effects.
This was elucidated through the presentation of conditional averages of the number
density, conditioned on IIu (i.e. 〈n|IIu〉), which showed increased concentrations in
high-strain regions (i.e. IIu < 0).

4.2.2.1. Conditional number density and droplet mass

Figure 13 presents the number density field conditionally averaged on both the
second invariant of the deformation tensor and on passive scalar tracer values φ < 0.5
(i.e. considering primarily only laden-stream fluid) at the final simulation times for
various values of both the mass loading (St0 = 1.02) and the initial Stokes number
(ML = 0.125). The number density is, in all cases, normalized by its initial mean value
in the laden stream; n0 = N/( 1

2
L1L2L3). For the present mixing-layer configuration,

the second invariant quantitatively separates the three primary regions of the flow:
(i) vortical structures (both spanwise and streamwise) for IIu > 0, (ii) high-strain
regions predominantly located in the braids for IIu < 0, and (iii) free-stream fluid
outside of the layer for IIu ≈ 0. The curves in figure 13(a) indicate that increasing the
mass loading ratio results in an increasing tendency for droplets to be concentrated
in high-strain regions of the flow. These curves provide quantitative evidence of
the previously observed concentration streak formations. At the smallest loading,
ML = 0.02, the vortical regions are essentially devoid of droplets, whereas strained
regions show a nearly uniform droplet concentration. This is due to the droplets
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Figure 13. Normalized droplet number density conditionally averaged on both the value of the
second invariant of the deformation tensor and on scalar values φ < 0.5, at time t∆U0/δω,0 = 50
for various values of (a) the initial liquid loading (St = 1.02: results from simulations run 0 – run
5), (b) the initial droplet Stokes number (ML = 0.125: results of simulations runs 6, 3 and 7).

having sufficient inertia to be centrifuged away from vortical structures during the
early stages of mixing before substantial evaporation occurs; since evaporation is
completed for the ML = 0.02 droplets at t∆U0/δω,0 ≈ 40 (see figure 3a), thereafter
they behave as fluid elements. Once in the strain regions, these droplets show no further
tendency to concentrate (although there is no mechanism to return them to vorticity
regions). Saturation occurs for the remaining cases, resulting in larger mean droplet
size distributions as a function of the initial loading ratio (figure 7a); therefore, the
heavier droplets corresponding to larger mass loadings show the strongest preferential
concentration effects in figure 13(a) owing to their larger inertia (the crossing of the
ML = 0.35 and ML = 0.225 curves at the negative IIu extrema is due to sample size).
This same argument explains the stronger concentrations in IIu < 0 regions observed
for large St0 droplets in figure 13(b). Our findings are opposite to those reported by
Squires & Eaton (1990) for isotropic turbulence; they suggest decreasing preferential
concentration for increasing solid particle Stokes number. However, if this occurred
in mixing layers, it would be inconsistent with many experimental and simulation
results which reveal that particle streaks are optimally formed for St ∼ 1 (Wen et al.
1992; Martin & Meiburg 1994; Kiger & Lasheras 1995, 1997). We conjecture that
the large-scale mixing-layer structures are responsible for this discrepancy because
they are primarily responsible for the droplet centrifugation. For example, Lazaro
& Lasheras (1992a, b) observed enhanced lateral particle dispersion only for forced
mixing layers, and not for unforced cases. This possibility cannot be addressed by
the present DNS because the Reynolds numbers are too small to perform physically
meaningful unforced simulations.

In addition to the number density, the structural distribution of the droplet mass
for evaporating flows can also be illustrated through conditional averaging on the
second invariant. These results are presented in figure 14 for the same simulations as
in figure 13; however, the averaging is over Lagrangian droplet quantities and IIu has
been interpolated to the droplet locations. At the final simulation time, the averages
in figure 14(a) show that the droplet mass is highly dependent on the location within
the flow field. The largest droplet masses are in all cases found in the laden-stream
fluid outside the layer. For all flow regions, the mean droplet mass is an increasing
function of the mass loading ratio owing to the saturation process (see figures 7
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Stokes number (ML = 0.125: results of simulations runs 6, 3 and 7).
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Figure 15. Slip temperature conditionally averaged on the value of the second invariant of the
deformation tensor at the droplet locations at time t∆U0/δω,0 = 50 from (a) simulations run 10 and
run 11 for non-evaporating droplets with ML = 0.225 and St = 1.02, and (b) for various values of
the initial liquid loading (St = 1.02) from simulations run 0 – run 5.

and 8). Inside the strained flow regions (IIu < 0) the mean droplet mass is observed

to decrease with increasing strain, because strained braid structures are associated

with relatively large local temperature. Moreover, droplets within the strain region

(IIu < 0) are generally larger than those in vortical regions (IIu > 0) despite the

fact that low-pressure vortices are generally at a lower temperature than the strained

braid regions. This occurs for two primary reasons: (i) The number density is reduced

within vortices (figure 13) and therefore so is the vapour mass fraction; this allows

for increased droplet mass loss prior to saturation. (ii) It is only the smaller droplets

that are able to follow fluid motions closely and resist centrifugal expulsion from the

vortices. Finally, as discussed previously, larger initial Stokes numbers result in larger

droplets within the layer at saturation (see figure 7b), thus accounting for the effects

of St0 observed in figure 14(b).
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4.2.2.2. Conditional slip temperature

The structural distribution of the slip temperature field is addressed in figure 15
for both solid particles and evaporating droplets. The results from simulations with
solid particles depicted in figure 15(a) correspond to flows for which thermal coupling
with the gas phase is either considered (Q 6= 0 in SIII ) or is not considered (Q = 0
in SIII ), although the droplet energy equation is solved in both cases. In both of
these simulations, the droplets in vortical regions (IIu > 0) tend to be at temperatures
greater than the surrounding fluid temperature, whereas droplets in strained regions
(IIu < 0) are on average at a lower temperature than the fluid (see also figure 11).
As will be discussed below, thermal coupling with the condensed phase acts to
reduce fluctuations in the gas temperature; therefore, the thermally uncoupled case
illustrated in figure 15(a) shows a larger variance in the gas phase temperature field,
which explains the differences between the two slip temperature curves. For cases
involving evaporation, an entirely different behaviour of the conditionally averaged
slip temperature is found (figure 15b; see also figure 12): droplets in both the vortical
and strained regions are being mixed with relatively high-temperature unladen-stream
fluid. This results in enhanced evaporation rates and positive mean slip temperatures
owing to latent heat effects for all cases except the completely evaporated ML = 0.02
droplets (see also figures 6c and 12). An inverse dependence of the conditional slip
temperature magnitude as a function of ML is found for droplets residing within the
vortical and strained fluid regions. These observations can be explained after noting
that the ‘wet bulb depression’ (i.e. TG − TWB) is an increasing function of the local
gas temperature (e.g. Miller et al. 1998). The droplets corresponding to larger mass
loading ratios are characterized at the final simulation times by larger total liquid
mass (figure 3a) in addition to larger individual droplet mass and therefore also
larger thermal inertia (figure 7a). Therefore, large mass loadings are more efficient at
dampening the gas phase temperature (this is discussed in more detail below) and
result in the decreased slip temperatures found in figure 15(b) for strained flow regions
(IIu < 0). A plausible explanation for why the opposite trends are found in the vortical
regions (IIu > 0) is based on the previous observation that preferential concentration
effects are simultaneously being enhanced with increasing ML (figure 13a): since
fewer droplets reside within the vortices, the gas phase temperature is less dampened
by the droplets, and therefore the slip temperature increases with ML.

4.3. Statistical profiles and flow modulation

Attention is now turned to describing the nature of the two-phase mixing layer as
illustrated by the cross-stream profiles of pertinent mean and fluctuation statistical
quantities. In particular, we are interested in determining the extent of similarity which
may (or may not) exist for the mixing layer, as well as the structure and modulation
of both first- and second-order statistics. Furthermore, the effects of the initial droplet
Stokes number (within the range 0.5 6 St0 6 2.0) have already been observed to be
essentially negligible and will hereinafter be discussed only as necessary.

4.3.1. First-order statistics

The mean Eulerian droplet number density cross-stream profiles are shown as a
function of both the initial mass loading and the initial droplet Stokes number at the
final simulation times in figure 16. The two most prominent aspects of these curves are
the approximate coincidence (or ‘collapse’) with variation of ML and the occurrence
of an overshoot at the inner edge of the layer. The coincidence of the curves is
attributed to a similar coincidence of the mean streamwise velocity (discussed below)
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Figure 16. Cross-stream variations of mean Eulerian number density at time t∆U0/δω,0 = 50 for
various values of (a) the initial liquid loading (St = 1.02; results from simulations run 0 – run 5)
and (b) the initial droplet Stokes number (ML = 0.125: results of simulations runs 6, 3 and 7).

which convect the droplets. The enhanced number density magnitudes on the inner
edge of the layer (x2/δω ≈ −1), which in all cases exceed the laden stream number
density, has been found previously for solid-particle-laden mixing-layer simulations
(Martin & Meiburg 1994) as well as for both unforced and forced experiments
(Lazaro & Lasheras 1992a, b). In particular, Martin & Meiburg (1994) studied a wide
range of droplet Stokes numbers (10−2 6 St 6 102) and observed this peak in the
concentration profiles for all Stokes numbers larger than St ∼ 10−1; the peaks were
attributed to the lateral dispersion of the concentration streaks (see figure 9) into the
laden-stream fluid. Martin & Meiburg also found a second complementary peak in
the number density profiles on the unladen-stream side of the layer in many cases;
this does not occur in the present simulations because the Stokes numbers for droplets
penetrating into/through the layer are substantially reduced by evaporation such that
these droplets behave as fluid elements. Note also that Lazaro & Lasheras (1989)
and Kiger & Lasheras (1995) both report similar peaks in Sauter mean diameter
profiles (for polydisperse solid particles) and attribute them to a preferential lateral
dispersion of heavy particles. Our results do not show any corresponding peaks in the
droplet size profiles (see figure 7) which is again due to evaporation reducing the size
of droplets penetrating the layer (note that our solid particle simulations run 10 and
run 11 are monodisperse, so we cannot compare these results to the experiments).
Furthermore, two additional minor peak regions are found in both figures 16(a) and
16(b) at x2/δω ≈ −0.5 and x2/δω ≈ +0.5 which are also due to the distribution of
the droplets with respect to the vortical and strain regions (figure 9). In particular,
these secondary peaks in the mean number density profiles are enhanced (or retarded
at x2/δω ≈ +0.5) as preferential concentration is enhanced, i.e. for both increasing
ML (figure 13a) and for increasing St0 (figure 13b). This effect is most obvious in
figure 16(b) because the fluctuation kinetic energy is relatively unaffected by changes
in St0, whereas increased mass loadings reduce the gas phase vortical development
(to be shown) which counteracts somewhat the preferential concentration process.

The cross-stream variations of the mean gas and droplet velocities are presented in
figure 17 at the final simulation time for various values of the liquid loading ratio;
the mean free-stream u1 velocity is slightly larger in magnitude than the initialization
U0 owing to the superimposed forcing disturbance and the impermeable wall x2

boundaries (i.e. the flow must increase its velocity near the walls to compensate for
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Figure 17. Cross-stream variations of mean flow variables at time t∆U0/δω,0 = 50 for various
values of the initial liquid loading (St = 1.02): (a) streamwise gas velocity, (b) streamwise droplet
velocity, (c) cross-stream gas velocity, (d) cross-stream droplet velocity. The data correspond to the
results of simulations run 0 – run 5.

the expansion of the layer). The most obvious feature of these curves is that the mean
gas velocity profiles (figure 17a) coincide for all liquid loadings when the x2-coordinate
is normalized with the instantaneous vorticity thickness (note that δω is a function of
ML; see figure 2). This is somewhat unexpected since both the mixing-layer growth
rate and the cross-stream variation of the mean gas temperature (figure 6a) have
already been shown to be strongly modulated by droplet loading. However, this
finding is not unprecedented: Kulick et al. (1994) also observed that the normalized
mean velocity profile for turbulent channel flow is unaltered for solid particle mass
loadings as large as 80%. Similarly to our results, the mean channel flow profiles
coincided, despite the fact that the turbulence energy was strongly attenuated by the
particles. At the present time, we have no completely satisfying explanation for either
the present or the channel flow results. This issue therefore deserves future scrutiny.

Further consideration of figures 17(a) and 17(b) shows that the mean streamwise
droplet velocities are smaller (including more negative for x2 < 0) than the corre-
sponding fluid velocity for all mass loadings and cross-stream locations within the
interior of the layer. This indicates that the droplets are actually moving faster on
average than the gas within the laden stream portion of the layer where the velocities
are negative (note that this does not require the droplet velocities to be locally larger
than the fluid velocity because 〈u1〉 is not calculated at the droplet locations). This
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Figure 18. Cross-stream variations of mean thermodynamic flow variables at time t∆U0/δω,0 = 50
for various values of the initial liquid loading (St = 1.02): (a) gas pressure normalized by the
initial pressure (atmospheric), (b) gas density. The data correspond to the results of simulations run
0 – run 5.

somewhat unexpected result occurs for all of the simulations and can be attributed
to the fact that droplets tend to concentrate into decelerating fluid regions within
this portion of the domain, as seen by identifying negative slip velocity regions in
figure 10 and comparing them to corresponding concentrations in figure 9. The mean
streamwise droplet velocity exhibits a small reduction with increased liquid mass
loadings owing to saturation at larger droplet inertia for large ML (figure 7a). For
incompressible flow, the mean cross-stream gas velocity 〈u2〉 must be zero owing to
divergence-free velocity and the homogeneity of the x1- and x3-cooordinate directions.
For the present slightly compressible flow, figure 17(c) shows that dilatational effects
result in a small finite 〈u2〉 profile in the absence of evaporation (ML = 0) which
is indicative of symmetric layer expansion away from the x2 = 0 plane. As will be
shown below, evaporation causes a reduction in the laden-stream pressure which acts
to draw fluid towards the x2 < 0 portion of the domain for ML > 0, and results in
slightly negative 〈u2〉 values across the entire layer (figure 17c). On the other hand,
the droplets are initialized non-symmetrically about the x2 = 0 plane and therefore
display a significant mean velocity (〈〈v2〉〉) corresponding to penetration into and
across the layer (figure 17d), i.e. droplets crossing the layer are not statistically offset
by reverse motions because only the x2 < 0 portion of the domain is seeded (see e.g.
figure 9). Therefore, even the ML = 0.02 droplets, which closely follow fluid motions
owing to their very small Stokes numbers (completely evaporated), are characterized
by positive cross-stream motion within the layer. On the laden-stream side of the
layer, 〈〈v2〉〉 is negative corresponding to a decrease in the laden-stream pressure
which is an indirect result of evaporation for the present mixing layer (explained
below). It is only the ML = 0.02 droplets that do not display this negative peak
near x2/δω ≈ −1, owing to the relatively low mass loading and correspondingly
small pressure and/or dilatational effects. These results suggest that the dispersed
phase mean velocity profiles do not coincide under the coordinate scaling: this is in
agreement with the channel-flow measurements of Kulick et al. (1994).

Figure 18 displays the cross-stream variations of the normalized mean gas phase
pressure and density at the final simulation times for various initial droplet mass
loading ratios. In contrast to the mean streamwise gas velocity, these profiles do not
coincide under the coordinate scaling. The pressure profiles display a minimum point
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within the layer at x2 = 0 for all cases, which is due to the presence of the low-pressure
vortex cores. Evaporation causes an increase in the gas density in the laden stream
which intuitively may be expected to result in a corresponding increase in the laden-
stream pressure. However, the simultaneous decrease in the laden-stream temperature
(figure 6a) owing to latent heat effects counteracts this expected effect, resulting in a
net decrease in the laden-stream pressure, as observed in figure 18(a). An examination
of the pressure profiles near the x2 = − 1

2
L2 wall reveals a dissimilarity between the

various curves which results from interaction of the layer expansion with the wall. The
ML = 0.35 layer is relatively thin (figure 2a) and interacts only minimally with the
wall, showing a small pressure bulge on the edge of the layer; however, as the mass
loading is reduced and the layer becomes wider, the corresponding pressure bulges on
the layer’s edge come in contact with the wall. On the unladen-stream portion of the
domain the mean pressure is also found to decrease with increasing ML even though
there are no droplets present for x2/δω > 1; this reduction results from both the
mean pressure imbalance and the mean gas temperature gradient (figure 6a) across
the layer, resulting in the correspondingly larger net fluid motion towards the laden
stream with increasing ML (figure 17c). The mean density profiles in figure 18(b)
follow directly from the state equation and the already explained physical processes
associated with the gas temperature (figure 6a), the vapour mass fraction (figure 5a)
and the gas pressure (figure 18a). As expected, the laden-stream density is increased
by evaporation through mass addition to the gas phase. In the centre of the layer,
the density is found to increase with ML despite the fact that essentially the same
total mass of liquid has been evaporated for the cases with ML > 0.075 (figure 3b);
this is due to the combined effects of the density along the x2 = − 1

2
L2 wall being

modified by the above-mentioned wall-pressure interaction, and to the requirement
that the integral

∫ 〈ρG〉dx2 must be approximately constant for cases with ML > 0.075
owing to approximately the same evaporative gas phase mass additions (see figure 3b).
Finally, note that the non-coinciding density profiles reveal that the mean streamwise
momentum profiles, in contrast to the streamwise velocity profiles in figure 17(a), do
not coincide.

4.3.2. Second-order statistics

We now turn our attention to the cross-stream profiles of second-order statistical
quantities, with particular emphasis on the modulation and possible profile coinci-
dence of statistics related to small-scale flow features. The root mean square (r.m.s.)
statistics are calculated as:

ΨG,rms =
(
〈Ψ ′G2〉

)1/2

Ψd,rms =
(
〈〈Ψ ′d2〉〉

)1/2

(36)

where ΨG and Ψd are arbitrary gas phase (Eulerian) and droplet (Lagrangian)
variables, respectively. Hereinafter, the r.m.s. notation will be understood to be defined
with the appropriate averaging shown here for either Eulerian or Lagrangian droplet
variables. Root mean square statistics of the Eulerian number density are highly
sensitive to the grid spacing owing to the appearance of the computational volume in
(33). For example, consider a one-dimensional (x) domain with uniformly distributed
droplets spaced at equal intervals ∆s. If the grid spacing is ∆x = ∆s with the droplets
placed exactly at the grid nodes, then the number density is n = 〈n〉 = 1/∆s at all grid
points; the r.m.s. number density is therefore equal to zero everywhere, as it should
be for the uniform distribution. On the other hand, if an increased resolution is used
with ∆x∗ = 1

2
∆x = 1

2
∆s, then the local number density alternates between values of
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Quantity ζ > 1 ζ < 1

n ζ/(∆s)3 or 0 1/(∆s)3

〈n〉 1/(∆s)3 1/(∆s)3

nrms (ζ − 1)1/2/(∆s)3 0

Table 3. Derived grid dependency of uniformly spaced (∆s) droplets calculated from equation (33) on
a uniformly spaced (∆x) computational grid as a function of the relative volumes, ζ = (∆s)3/(∆x)3.

n = 2/∆s and n = 0 at alternating grid points, and the r.m.s. is nrms = 1/∆s (although
the mean remains correct with 〈n〉 = 1/∆s). These relations are extended to the
general three-dimensional case in table 3 which shows that 〈n〉 is correctly calculated
independent of the grid for all cases; however, nrms is only grid independent when the
grid spacing is larger than the droplet spacing (which is not generally the case, even
for very large numbers of droplets, owing to preferential concentration). This grid
dependency is related to the necessity of assuming that many droplets are contained
within averaging volumes when deriving Eulerian–Eulerian two-phase flow models
(e.g. Zhou 1993; Elghobashi 1994). In light of these discussions, we will not present
second-order statistics of the Eulerian number density in this paper; however, statistics
of Lagrangian droplet variables are not grid dependent and will be presented below.

Figure 19 presents profiles of the r.m.s. fluctuations of both the gas and droplet
phase velocities at the final simulation times and for various droplet loadings. Several
important features are displayed by the r.m.s. velocity profiles. First, none of the
fluctuation quantities has coinciding profiles under the coordinate scaling, in contrast
to the mean number density and the mean streamwise gas velocity which do coincide
(figures 16 and 17a) for varying ML. Secondly, the fluctuation kinetic energy becomes
increasingly attenuated with increasing mass loadings; this effect is most strongly
apparent in the cross-stream component (u2,rms) owing to the droplets impeding
the large-scale vortical roll-up. In no cases do we find increased total gas phase
kinetic energy as has been found in several past experiments involving large solid
particles (see e.g. Kenning & Crowe 1997); however, these kinetic energy increases
were generally attributed to either droplet wake or gravitational effects and occurred
only for large droplets having D/l > 10−1 where l is the integral lengthscale of the
turbulence (e.g. Elghobashi & Truesdell 1993). Thirdly, the streamwise component
energy is slightly increased by the droplets at the centreline (figure 19a); this is due
to the influence of negative slip velocities in regions of decelerating gas flow within
the high-concentration braids structures (figure 10a) which serve as a source of gas
phase kinetic energy. The trends observed for the droplet velocity fluctuations as a
function of ML are readily explained in terms of the larger inertia for the larger
ML cases at the time of saturation. The secondary ‘bulge’ in the v1,rms profiles at
the inner edge of the layer (figure 19b) forms because of the lateral dispersion of
the concentration streaks which are being drawn around the primary spanwise roller
(figure 10a). However, as the liquid loading is increased, the formation of streaks
and spanwise rollers is impeded, and the secondary peak fades. The effects of the
initial droplet Stokes number are essentially negligible for second-order gas velocity
component modulation (not shown).

A comparison of the respective gas and droplet profiles in figure 19 shows that
both the streamwise and spanwise droplet velocity component energies are larger
than the corresponding gas phase intensities within the unladen stream portion of the
profiles (x2 > 0), in contrast to the cross-stream component for which u2,rms > v2,rms
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Figure 19. Cross-stream variation of normalized r.m.s. velocity statistics at time t∆U0/δω,0 = 50 for
various values of the initial liquid loading (St = 1.02): (a) streamwise gas velocity, (b) streamwise
droplet velocity, (c) cross-stream gas velocity, (d) cross-stream droplet velocity, (e) spanwise gas
velocity, (f) spanwise droplet velocity. The data correspond to the results of simulations run 0 –
run 5.

for all x2. Elevated streamwise component intensities for a dispersed phase have
previously been observed in turbulent channel flow by Kulick et al. (1994), detected in
turbulent boundary-layer flow by Rogers & Eaton (1990), and found in homogeneous
shear turbulence by Mashayek (1998b) (for evaporating droplets), as well as in other
turbulent flows containing a mean velocity gradient (Soo et al. 1960; Carlson & Peskin
1975; Tsuji & Morikawa 1982; Steimke & Dukler 1983). This phenomenon has also
been predicted theoretically for the streamwise velocity components in the presence of
a constant mean gas velocity gradient by Liljegren (1993) for solid particles. However,
to our knowledge this has never been identified for the spanwise component as is
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Figure 20. Cross-stream variation of normalized r.m.s. temperature statistics at time t∆U0/δω,0 = 50
for various values of the initial liquid loading ((a), (b); St = 1.02, data from simulations run 0 –
run 5) and for various values of the initial droplet Stokes number ((c),(d); ML = 0.125, data from
simulations run 6, 3 and 7): (a), (c) gas temperature, (b), (d) droplet temperature.

observed by comparing figures 19(e) and 19(f). The reason for this is two-fold: First,
none of the above experiments or simulations has treated flows with strong large-scale
three-dimensionality. Secondly, the concentration of droplets/particles must be non-
symmetric about the x2 = 0 plane to create this effect. In the present mixing layer,
droplets that are ‘flung’ into the unladen stream by spanwise motions (v3) due to the
secondary vortices experience a decelerating u3 field because the streamwise vortices
are strongest near the middle of the layer. Therefore, inertia effects cause the slip
velocity component u3− v3 to be negative. However, since there are no droplets in the
unladen stream penetrating the layer in the opposite direction, there is no statistical
offset from inverse droplet motions. The net effect is that v3,rms > u3,rms for x2 > 0.

The final time cross-stream profiles of the r.m.s. gas and droplet temperatures are
shown in figure 20 as functions of both the initial droplet loading and the initial Stokes
number. The presence of the liquid phase substantially attenuates the gas temperature
fluctuations on the laden-stream side of the layer (figure 20a) owing to convective
thermal energy absorption (Q) by the evaporating droplets. On the initially unladen
side of the layer, the mass of liquid penetrating it is relatively small, and therefore only
negligible thermal energy attenuation is found for x2 > 0 in figure 20(a). The level of
attenuation increases with increasing droplet loading, but is unaltered by changes in
the initial droplet Stokes number due to the fixed ML (figure 20c). In contrast to the
r.m.s. gas temperature, the r.m.s. droplet temperatures in figures 20(b) and 20(d) show
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two distinct enhanced thermal fluctuation intensity peaks located on both the inner
and outer edges of the layer. This behaviour occurs even for the ML = 0.02 ‘fluid
element’ droplets due to the droplet devoid vorticity regions located approximately
along the x2 = 0 plane (see figures 12 and 13). Therefore the averaging procedure
which produces the ML = 0.02 profile in figure 20(b) is essentially an average of the
gas phase temperature (because Td ≈ TG locally for ML = 0.02 droplets) conditioned
primarily only on high-strain (and high-temperature) regions near the x2 = 0 plane
of the layer; the small spatial sampling therefore has a reduced r.m.s. owing to
the more uniform gas and droplet temperatures within the confined spatial braid
region. However, near x2/δω = +0.5, the number density contours in figure 9 suggest
that the number of droplets on the edge of the primary vortex becomes significant,
thereby increasing Td,rms owing to more widespread sampling, thus producing the
second peak in the profile. As the mass loading is increased, the added total thermal
inertia reduces both the gas phase temperature fluctuations through Q effects and the
vortical development of the layer, while simultaneously reducing the effective response
of droplets to changes in the surrounding gas temperature. Therefore, both Td,rms and
the formation of double peaks is reduced for increasing ML in figure 20(b). Changes
in the initial droplet Stokes number for constant mass loading are not found to cause
significant changes in the gas phase temperature fluctuations (figure 20c), as has
been observed previously for the vorticity development and the velocity component
energies. Finally, the Td,rms profiles in figure 20(d) as a function of St0 behave similarly
to those in figure 20(b) for changes in ML; however, the appearance of the double
peaks is in this case enhanced for large droplets. This occurs because the vortical
development and gas phase temperature r.m.s. are both unaffected by St0, whereas
the preferential concentration mechanism is considerably increased for larger initial
droplet Stokes numbers (figure 13b).

5. Conclusions
Results have been presented from direct numerical simulations (DNS) of a three-

dimensional, temporally developing, initially isothermal gas mixing layer with one
evaporating hydrocarbon-droplet-laden stream. The simulations were conducted in
the Eulerian–Lagrangian reference frame in which every individual droplet is tracked
through the solution of time-dependent equations for each droplet position, veloc-
ity, temperature and mass. The evaporation model is based on the non-equilibrium
Langmuir–Knudsen law, and the interior droplet temperature is considered to be
uniform through the assumption of infinite liquid thermal conductivity. Complete
two-way phase coupling was incorporated, based on a new formulation of the energy
coupling term which is valid for non-equal liquid and vapour heat capacities. This
formulation was shown to be dependent on proper specifications for the vapour
enthalpy, internal energy and the latent heat of vaporization. It was shown that the
latent heat must be defined as a linear function of temperature for the calorically
perfect species considered in this study. The carrier gas and liquid/vapour species
correspond to ‘pseudo-air’ and ‘pseudo-decane,’ respectively: For the present condi-
tions, ‘pseudo’ refers to the fact that viscous properties are defined using artificially
inflated values to match a specified initial Reynolds number; however, heat capacities,
molecular weights, reference enthalpy and remaining properties are calculated from
correlations for the ‘real’ species defined at an appropriate reference temperature.
Using this formulation, a variety of simulations were conducted under fixed gas flow
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conditions by varying several of the pertinent droplet parameters, including the ini-
tial liquid mass loading ratio and the initial monodisperse droplet Stokes number.
The DNS results were used primarily for studying the issues of evaporative flow
saturation, preferential concentration and flow modulation.

The growth rate and kinetic energy development of the mixing layer were both
found to be increasingly attenuated by the droplets for increasing mass loading ratios;
however, changes in the initial Stokes numbers in the range 0.50 6 St0 6 2.00 at
fixed mass loading showed no significant effects on the evolution of the layer. In
all but the smallest mass loading cases, the mixing layer saturates during the early
stages of mixing as characterized by premature cessation of evaporation in the laden
stream resulting from: (i) build up of vapour mass fraction, and (ii) a reduction in
the gas temperature caused by latent heat effects. However, as the mixing layer grows,
droplets are continually entrained into the layer where they are further evaporated by
contact with the higher-temperature unladen-stream fluid. The saturation process was
shown to result in a quasi-steady distribution of droplet sizes characterized by a nearly
constant mean droplet mass in the laden stream, and by a monotonically decreasing
mean size profile across the interior of the layer. The total range of droplet sizes
(polydispersity) found within the layer at final times increases with both increasing
mass loading and increasing initial droplet Stokes number. The qualitative nature of
the saturation is essentially the same for all of the performed simulations; however,
the quantitative final state of the layer is determined primarily by the mass loading
ratio, and to a lesser extent by the initial droplet temperature.

Both flow visualizations and statistical analyses based on conditionally averaged
flow variables on the second invariant of the deformation tensor were used to study
the instantaneous organization of the droplets as well as the extent of preferential
concentration in the two-phase mixing layer. Concentration streaks were observed
to form in the braid regions between spanwise vortices, similar to previous results
from two-dimensional simulations and experiments using solid particles. However, the
strong three-dimensionality of the present flow field additionally causes the streaks
to wrap around the periphery of streamwise vortices, thus causing the formation of
concentration ‘mushroom’ structures in the braid regions. The flow visualization was
further used to extend past observations from solid particle dispersion experiments
which noted the existence of regions of persistent positive and negative velocity slip.
These regions and their locations relative to the primary spanwise vortices were found
to form in a similar, though somewhat more complex, manner for evaporating droplets
in highly three-dimensional shear flow. Furthermore, these ideas were extended to the
temperature field which was found to contain similar regions of persistent positive
and negative temperature slip. The slip temperature regions were found to corre-
spond inversely to the velocity slip regions for solid particles; however, they have a
substantially more complex distribution for evaporating droplets. Conditional aver-
aging on the second invariant showed that droplets are preferentially concentrated in
high-strain regions of the flow and have larger sizes than the relatively fewer droplets
remaining within vortical structures. Effects of evaporation, mass loading and initial
Stokes number on the preferential concentration were also discussed.

Cross-stream profiles of first- and second-order flow statistics at the final simulation
times were used in order to examine the structure of the velocity and temperature
fields of both phases, as well as the extent of flow modulation imposed on the gas
phase by the droplets. The results show that both the mean streamwise gas velocity
and the Eulerian number density profiles coincide for all droplet mass loadings when
the cross-stream coordinate is normalized by the instantaneous vorticity thickness.
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In contrast, mean profiles of thermodynamic flow variables do not coincide. Peaks
in all of the mean number density profiles indicated a region of enhanced droplet
concentration at the inner edge of the layer, similar to existing observations of solid-
particle dispersion. Both the kinetic and thermal energies of the gas phase were
observed to be attenuated by the droplets, as shown through the cross-stream profiles
of second-order statistics of the gas velocity components and temperature. The kinetic
energy attenuation is strongest for the cross-stream velocity component. On the other
hand, the streamwise velocity component energy is slightly increased by droplets at
the centre of the layer, but attenuated on either edge of the layer. The gas phase
thermal energy was also found to be attenuated by droplets, but primarily only on
the laden-stream side of the layer. A comparison with the second-order statistics of
the droplet velocity showed that the component energies are larger for the droplets
than for the gas phase in both the streamwise and spanwise directions within the
unladen stream side of the layer; the latter finding was attributed to the strong three-
dimensionality of the present flow. However, the intensities of both the cross-stream
velocity and the temperature fluctuations were found to be largest for the gas phase
in all cases. In all of the above, the primary effects of the droplets on the quantitative
results were found to be due to the liquid mass loading ratio; changes in the initial
Stokes number (within the range 0.5 6 St0 6 2.0 ) for fixed loading had a nearly
negligible influence on the gas flow modulation.
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